995 resultados para Mineral Exploration
Resumo:
The Central gold belt of peninsular Malaysia comprises a number of gold deposits located in the east of the N-S striking Bentong-Raub Suture Zone. The Tersang gold deposit is one of the gold deposits in the gold belt and hosted in sandstone, rhyolite and breccia units. The deposit has an inferred resource of 528,000 ounces of gold. The geochronology of the Tersang deposit has been newly constrained by LA ICP-MS U-Pb zircon dating. The maximum depositional age of the host sedimentary rocks ranges from Early Carboniferous to Early Permian (261.5 ± 4.9 Ma to 333.5 ± 2.5 Ma) for the host sandstone and Late Triassic for the rhyolite intrusion (218.8 ± 1.7 Ma). Textural characteristics of pyrite have revealed five types including (1) Euhedral to subhedral pyrite with internal fracturing and porous cores located in the sandstone layers (pyrite 1); (2) Anhedral pyrite overgrowths on pyrite 1 and disseminated in stage 1 vein (pyrite 2); (3) Fracture-filled or vein pyrite located in stages 1 and 2 vein (pyrite 3); (4) Euhedral pyrite with internal fractures also located in stage 2 vein (pyrite 4); and (5) Subhedral clean pyrite located in the rhyolite intrusion (pyrite 5). Based on pyrite mapping and spot analyses, two main stages of gold enrichment are documented from the Tersang gold deposit. Gold in sandstone-hosted pyrite 1 (mean 4.3 ppm) shows best correlation with Bi and Pb (as evidenced on pyrite maps). In addition, gold in pyrite 3 (mean 8 ppm) located in stage 2 vein shows a good correlation with As, Ag, Sb, Cu, Tl, and Pb. In terms of gold exploration, we suggest that elements such as As, Ag, Sb, Cu, Tl, Bi, and Pb associated with Au may serve as vectoring tools in gold exploration. Our new geological, structural, geochemical and isotopic data together with mineral paragenesis, pyrite chemistry and ore fluid characteristics indicate that the Tersang gold deposit is comparable to a sediment-hosted gold deposit. Our new genetic model suggests deposition of the Permo-Carboniferous sediments followed by intrusion of rhyolitic magma in the Late Triassic. At a later stage, gold mineralisation overprinted the rhyolite intrusion and the sandstone.
Resumo:
Sorption of volatile hydrocarbon gases (VHCs) to marine sediments is a recognized phenomenon that has been investigated in the context of petroleum exploration. However, little is known about the biogeochemistry of sorbed methane and higher VHCs in environments that are not influenced by thermogenic processes. This study evaluated two different extraction protocols for sorbed VHCs, used high pressure equipment to investigate the sorption of methane to pure clay mineral phases, and conducted a geochemical and mineralogical survey of sediment samples from different oceanographic settings and geochemical regimes that are not significantly influenced by thermogenic gas. Extraction of sediments under alkaline conditions yielded higher concentrations of sorbed methane than the established protocol for acidic extraction. Application of alkaline extraction in the environmental survey revealed the presence of substantial amounts of sorbed methane in 374 out of 411 samples (91%). Particularly high amounts, up to 2.1 mmol kg**-1 dry sediment, were recovered from methanogenic sediments. Carbon isotopic compositions of sorbed methane suggested substantial contributions from biogenic sources, both in sulfate-depleted and sulfate-reducing sediments. Carbon isotopic relationships between sorbed and dissolved methane indicate a coupling of the two pools. While our sorption experiments and extraction conditions point to an important role for clay minerals as sorbents, mineralogical analyses of marine sediments suggest that variations in mineral composition are not controlling variations in quantities of sorbed methane. We conclude that the distribution of sorbed methane in sediments is strongly influenced by in situ production.
Resumo:
Illite is a general term for the dioctahedral mica-like clay mineral common in sedimentary rocks, especially shales. Illite is of interest to the petroleum industry because it can provide a K-Ar isotope date that constrains the timing of basin heating events. It is critical to establish that hydrocarbon formation and migration occurred after the formation of the trap (anticline, etc.) that is to hold the oil. Illite also may precipitate in the pores of sandstone reservoirs, impeding fluid flow. Illite in shales is a mixture of detrital mica and its weathering products with diagenetic illite formed by reaction with pore fluids during burial. K-Ar ages are apparent ages of mixtures of detrital and diagenetic end members, and what we need are the ages of the end members themselves. This paper describes a methodology, based on mineralogy and crystallography, for interpreting the K-Ar ages from illites in sedimentary rocks and for estimating the ages of the end members.
Resumo:
"Contract No. AT(30-1)-1377."
Resumo:
"April 1953."
Resumo:
Includes indexes.
Resumo:
"Division of Raw Materials."
Resumo:
Includes bibliography.
Resumo:
A test of the ability of a probabilistic neural network to classify deposits into types on the basis of deposit tonnage and average Cu, Mo, Ag, Au, Zn, and Pb grades is conducted. The purpose is to examine whether this type of system might serve as a basis for integrating geoscience information available in large mineral databases to classify sites by deposit type. Benefits of proper classification of many sites in large regions are relatively rapid identification of terranes permissive for deposit types and recognition of specific sites perhaps worthy of exploring further. Total tonnages and average grades of 1,137 well-explored deposits identified in published grade and tonnage models representing 13 deposit types were used to train and test the network. Tonnages were transformed by logarithms and grades by square roots to reduce effects of skewness. All values were scaled by subtracting the variable's mean and dividing by its standard deviation. Half of the deposits were selected randomly to be used in training the probabilistic neural network and the other half were used for independent testing. Tests were performed with a probabilistic neural network employing a Gaussian kernel and separate sigma weights for each class (type) and each variable (grade or tonnage). Deposit types were selected to challenge the neural network. For many types, tonnages or average grades are significantly different from other types, but individual deposits may plot in the grade and tonnage space of more than one type. Porphyry Cu, porphyry Cu-Au, and porphyry Cu-Mo types have similar tonnages and relatively small differences in grades. Redbed Cu deposits typically have tonnages that could be confused with porphyry Cu deposits, also contain Cu and, in some situations, Ag. Cyprus and kuroko massive sulfide types have about the same tonnages. Cu, Zn, Ag, and Au grades. Polymetallic vein, sedimentary exhalative Zn-Pb, and Zn-Pb skarn types contain many of the same metals. Sediment-hosted Au, Comstock Au-Ag, and low-sulfide Au-quartz vein types are principally Au deposits with differing amounts of Ag. Given the intent to test the neural network under the most difficult conditions, an overall 75% agreement between the experts and the neural network is considered excellent. Among the largestclassification errors are skarn Zn-Pb and Cyprus massive sulfide deposits classed by the neuralnetwork as kuroko massive sulfides—24 and 63% error respectively. Other large errors are the classification of 92% of porphyry Cu-Mo as porphyry Cu deposits. Most of the larger classification errors involve 25 or fewer training deposits, suggesting that some errors might be the result of small sample size. About 91% of the gold deposit types were classed properly and 98% of porphyry Cu deposits were classes as some type of porphyry Cu deposit. An experienced economic geologist would not make many of the classification errors that were made by the neural network because the geologic settings of deposits would be used to reduce errors. In a separate test, the probabilistic neural network correctly classed 93% of 336 deposits in eight deposit types when trained with presence or absence of 58 minerals and six generalized rock types. The overall success rate of the probabilistic neural network when trained on tonnage and average grades would probably be more than 90% with additional information on the presence of a few rock types.
Resumo:
Remote sensing, as a direct adjunct to field, lithologic and structural mapping, and more recently, GIS have played an important role in the study of mineralized areas. A review on the application of remote sensing in mineral resource mapping is attempted here. It involves understanding the application of remote sensing in lithologic, structural and alteration mapping. Remote sensing becomes an important tool for locating mineral deposits, in its own right, when the primary and secondary processes of mineralization result in the formation of spectral anomalies. Reconnaissance lithologic mapping is usually the first step of mineral resource mapping. This is complimented with structural mapping, as mineral deposits usually occur along or adjacent to geologic structures, and alteration mapping, as mineral deposits are commonly associated with hydrothermal alteration of the surrounding rocks. In addition to these, understanding the use of hyperspectral remote sensing is crucial as hyperspectral data can help identify and thematically map regions of exploration interest by using the distinct absorption features of most minerals. Finally coming to the exploration stage, GIS forms the perfect tool in integrating and analyzing various georeferenced geoscience data in selecting the best sites of mineral deposits or rather good candidates for further exploration.
Resumo:
A modern mineral processing plant represents a substantial investment. During the design process, there is often a period when costs (or revenues) must be compensated for by cuts in capital expenditure. In many cases, sampling and measurement equipment provides a soft target for such 'savings'. This process is almost analgous to reducing the capital investment in a corner store by not including a cash register. The consequences will be quite similar - a serious lack of sound performance data and plenty of opportunities for theft - deliberate or inadvertent. This paper makes the case that investment in sampling and measurement equipment is more cost-effective during the design phase. Further, a strong measurement culture will have many benefits including the ability to take advantage of small gains. In almost any business, there are many more opportunities to make small gains than to make large, step changes. In short, if a project cannot justify the cost of accurate and reliable measurement of its performance, it probably should not be a project at all.
Resumo:
The Centennial deposit is a high grade (~8% U3O8), deeply buried (~950m), unconformity-related U deposit located in the south-central region of the Athabasca Basin in northern Saskatchewan, Canada. The mineral chemistry of fine fractions (<63 μm) of soils from grids above the Centennial deposit were examined to understand possible controls on the geochemistry and radiogenic 207Pb/206Pb ratios measured in the clay-size (<2 μm) fractions used for exploration. Soil samples distal and proximal to the deposit projection to the surface and geophysically defined structures were selected. Mineral abundances were determined using the scanning electron microscope and Mineral Liberation Analysis. Zircon was the only U-rich mineral identified with modal abundances >0.02% by weight. Monazite, which can be U-rich, was identified, but not in significant abundances. The source of the zircon and other heavy minerals is interpreted to be from sub-cropping sources that are >100 km up-ice from Centennial. Trace element analysis using laser ablation inductively coupled plasma mass spectrometry of hydroseparated zircon grains indicate that zircon abundances and zircon Pb concentrations in surficial samples have minimal effect on the radiogenic 207Pb/206Pb ratios in the clay-fraction of the samples, with the dominant source of radiogenic Pb being clay mineral surfaces that trapped Pb during secondary dispersion from the Centennial uranium deposit through faults and fractures to the surface. The REE patterns indicate HREE enrichment in the clay-fractions of samples that have higher abundances of zircon in the <20 μm fraction. Immobile elements such as HREE that are concentrated in zircon can be used as indicators of radiogenic Pb being sourced from minerals at the surface rather than being sourced from secondary dispersion from deeply buried U deposits.
Resumo:
The International Seabed Authority (ISA) regulates the activities related with the exploration and exploitation of seabed mineral resources in the Area, which are considered as the "common heritage of mankind" under the United Nations Convention on the Law of the Sea.The ISA has also the mandate to ensure the protection of the marine environment.The development of good practices for the annual reporting and data submission by Contractors is crucial for the ISA to comply with the sustainable development of the mineral marine resources. In 2015,the ISA issued a new template for reporting on exploration activities, which includes the definition of the format for all geophysical, geological and environmental data to be collected and analysed during exploration. The availability of reliable data contributes to improve the assessment of the ISA on the activities in the Area while promoting transparency, which is considered as a major principle of industry bestpractices.
Resumo:
The thermal decomposition of natural ammonium oxalate known as oxammite has been studied using a combination of high resolution thermogravimetry coupled to an evolved gas mass spectrometer and Raman spectroscopy coupled to a thermal stage. Three mass loss steps were found at 57, 175 and 188°C attributed to dehydration, ammonia evolution and carbon dioxide evolution respectively. Raman spectroscopy shows two bands at 3235 and 3030 cm-1 attributed to the OH stretching vibrations and three bands at 2995, 2900 and 2879 cm-1, attributed to the NH vibrational modes. The thermal degradation of oxammite may be followed by the loss of intensity of these bands. No intensity remains in the OH stretching bands at 100°C and the NH stretching bands show no intensity at 200°C. Multiple CO symmetric stretching bands are observed at 1473, 1454, 1447 and 1431cm-1, suggesting that the mineral oxammite is composed of a mixture of chemicals including ammonium oxalate dihydrate, ammonium oxalate monohydrate and anhydrous ammonium oxalate.