929 resultados para Mineração de dados na educação
Resumo:
Os principais desafios relacionados ao problema de classificação de enzimas em banco de dados de estruturas de proteínas são: 1) o ruído presente nos dados; 2) o grande número de variáveis; 3) o número não-balanceado de membros por classe. Para abordar esses desafios, apresenta-se uma metodologia para seleção de parâmetros, que combina recursos de matemática (ex: Transformada Discreta do Cosseno) e da estatística (ex:.g., correlação de variáveis e amostragem com reposição). A metodologia foi validada considerando-se os três principais métodos de classificação da literatura, a saber; árvore de decisão, classificação Bayesiana e redes neurais. Os experimentos demonstram que essa metodologia é simples, eficiente e alcança resultados semelhantes àqueles obtidos pelas principais técnicas para seleção de parâmetros na literatura.Termos para indexação classificação de enzimas,predição de função de proteínas, estruturas de proteínas, banco de dados de proteínas, seleção de parâmetros, métodos para classsificação de dados.
Resumo:
2006
Resumo:
O Sistema de Indução C4.5. Requerimentos-chave para a utilização do software. Um exemplo ilustrativo. Algumas dicas de uso.
Resumo:
DiagText é uma ferramenta que teve como objetivo inicial auxiliar o processo de extração de informações de documentos textuais que descrevem doenças de culturas agrícolas para formação de uma árvore de decisão baseada nos sintomas das doenças avaliadas.
Resumo:
A ferrugem do cafeeiro é a principal doença da cultura do café. O conhecimento dos fatores que condicionam as epidemias de ferrugem e a sua previsão são importantes. Uma instância do processo de descoberta de conhecimento em bases de dados foi realizada para avaliar a aplicação de árvores de decisão na análise e no alerta da ferrugem. As classes do atributo meta foram definidas por intervalos da taxa de progresso da doença. Dados meteorológicos, a carga pendente de frutos e o espaçamento entre plantas serviram de atributos preditivos. As árvores de decisão obtidas auxiliaram na compreensão de quais variáveis, e como as interações dessas variáveis, conduziram a ferrugem no campo. O modelo de alerta para lavouras com alta carga pendente de frutos apresentou bom desempenho e pode ajudar na tomada de decisão referente ao controle da ferrugem do cafeeiro.
Resumo:
A classificação automática de sons urbanos é importante para o monitoramento ambiental. Este trabalho apresenta uma nova metodologia para classificar sons urbanos, que se baseia na descoberta de padrões frequentes (motifs) nos sinais sonoros e utiliza-los como atributos para a classificação. Para extrair os motifs é utilizado um método de descoberta multi-resolução baseada em SAX. Para a classificação são usadas árvores de decisão e SVMs. Esta nova metodologia é comparada com outra bastante utilizada baseada em MFCC. Para a realização de experiências foi utilizado o dataset UrbanSound disponível publicamente. Realizadas as experiências, foi possível concluir que os atributos motif são melhores que os MFCC a discriminar sons com timbres semelhantes e que os melhores resultados são conseguidos com ambos os tipos de atributos combinados. Neste trabalho foi também desenvolvida uma aplicação móvel para Android que permite utilizar os métodos de classificação desenvolvidos num contexto de vida real e expandir o dataset.
Resumo:
Atualmente, um dos principais desafios que afeta a saúde pública no Brasil é a crescente evolução no número de casos e epidemias provocados pelo vírus da dengue. Não existem estudos suficientes que consigam elucidar quais fatores contribuem para a evolução das epidemias de Dengue. Fatores como condições sanitárias, localização geográfica, investimentos financeiros em infraestrutura e qualidade de vida podem estar relacionados com a incidência de Dengue. Além disso, outra questão que merece um maior destaque é o estudo para se identificar o grau de impacto das variáveis determinantes da dengue e se existe um padrão que está correlacionado com a taxa de incidência. Desta forma, este trabalho tem como objetivo principal a correlação da taxa de incidência da dengue na população de cada município brasileiro, utilizando dados relativos aos aspectos sociais, econômicos, demográficos e ambientais. Outra contribuição relevante do trabalho, foi a análise dos padrões de distribuição espacial da taxa de incidência de Dengue e sua relação com os padrões encontrados utilizando as variáveis socioeconômicas e ambientais, sobretudo analisando a evolução temporal no período de 2008 até 2012. Para essa análises, utilizou-se o Sistema de Informação Geográfica (SIG) aliado com a mineração de dados, através da metodologia de rede neural mais especificamente o mapa auto organizável de Kohonen ou self-organizing maps (SOM). Tal metodologia foi empregada para a identificação de padrão de agrupamentos dessas variáveis e sua relação com as classes de incidência de dengue no Brasil (Alta, Média e Baixa). Assim, este projeto contribui de forma significativa para uma melhor compreensão dos fatores que estão associados à ocorrência de Dengue, e como essa doença está correlacionada com fatores como: meio ambiente, infraestrutura e localização no espaço geográfico.
Resumo:
As técnicas que formam o campo da Descoberta de Conhecimento em Bases de Dados (DCBD) surgiram devido à necessidade de se tratar grandes volumes de dados. O processo completo de DCBD envolve um elevado grau de subjetividade e de trabalho não totalmente automatizado. Podemos dizer que a fase mais automatizada é a de Mineração de Dados (MD). Uma importante técnica para extração de conhecimentosa partir de dados é a Programação Lógica Indutiva (PLI), que se aplica a tarefas de classificação, induzindo conhecimento na forma da lógica de primeira ordem. A PLI tem demonstrado as vantagens de seu aparato de aprendizado em relação a outras abordagens, como por exemplo, aquelas baseadas em aprendizado proposicional Os seus algorítmos de aprendizado apresentam alta expressividade, porém sofrem com a grande complexidade de seus processos, principalmente o teste de corbertura das variáveis. Por outro lado, as Redes Neurais Artificiais (RNs) introduzem um ótimo desempenho devido à sua natureza paralela. às RNs é que geralmente são "caixas pretas", o que torna difícil a obtenção de um interpretação razoável da estrutura geral da rede na forma de construções lógicas de fácil compreensão Várias abordagens híbridas simbólico-conexionistas (por exemplo, o MNC MAC 890 , KBANN SHA 94 , TOW 94 e o sistema INSS OSO 98 têm sido apresentadas para lidar com este problema, permitindo o aprendizado de conhecimento simbólico através d euma RN. Entretanto, estas abordagens ainda lidam com representações atributo-valor. Neste trabalho é apresentado um modelo que combina a expressividade obtida pela PLI com o desempenho de uma rede neural: A FOLONET (First Order Neural Network).
Resumo:
A visualização de informações congrega um conjunto de técnicas que têm por objetivo facilitar o entendimento de informações a partir de representações visuais. Nesta área, parte-se do pressuposto de que uma representação visual de dados ou informações proporciona uma forma mais simples e intuitiva de entendê-los e, com isso, inferir mais rapidamente e com maior precisão o seu significado. Normalmente, a tarefa de análise de dados é realizada com o auxílio de ferramentas de acordo com a natureza dos dados e do estudo sendo realizado. As técnicas de visualização de dados e informações não substituem ferramentas de análise específicas. Elas podem ser usadas como primeira aproximação do processo de análise, quando sintetizam de forma visual uma grande massa de dados, permitindo escolher partes do volume de dados para análise mais detalhada, ou como forma de apresentação de dados já reduzidos. Quando o subconjunto dos dados de interesse está disponível, a utilização de uma ferramenta de visualização proporciona maior agilidade nas análises e padrões na massa de dados podem ser descobertos visualmente. Uma das classes de técnicas de visualização utilizada nesta área é a icônica. Um ícone (ou glifo) é um objeto com geometria e aparência paramétricas, as quais podem ser arbitrariamente vinculadas a dados. A função de um ícone é agir como uma representação simbólica, que mostra as características essenciais de um domínio de dados ao qual o ícone se refere. Assim é possível obter uma visualização dos dados de uma forma mais clara e compacta. Em geral, ícones são utilizados para representar dados multidimensionais, ou seja, múltiplos atributos associados a uma posição num espaço qualquer, ou a entidades em estudo. O presente trabalho analisa o uso de ícones na visualização de informações. São discutidos os conceitos fundamentais de visualização de informações e sua relação com a área de mineração de dados. O uso de ícones em diversos trabalhos apontados na literatura é apresentado, sendo abordada a questão de geração automática de ícones, mais flexível do que os conjuntos fixos providos pelos sistemas de visualização estudados. Uma proposta para gerar ícones de forma automática baseada numa especificação paramétrica dos ícones é utilizada em um conjunto de dados característicos de espécimes animais estudados por biólogos do Departamento de Genética da UFRGS.
Resumo:
Esta tese apresenta contribuições ao processo de Descoberta de Conhecimento em Bases de Dados (DCBD). DCBD pode ser entendido como um conjunto de técnicas automatizadas – ou semi-automatizadas – otimizadas para extrair conhecimento a partir de grandes bases de dados. Assim, o já, de longa data, praticado processo de descoberta de conhecimento passa a contar com aprimoramentos que o tornam mais fácil de ser realizado. A partir dessa visão, bem conhecidos algoritmos de Estatística e de Aprendizado de Máquina passam a funcionar com desempenho aceitável sobre bases de dados cada vez maiores. Da mesma forma, tarefas como coleta, limpeza e transformação de dados e seleção de atributos, parâmetros e modelos recebem um suporte que facilita cada vez mais a sua execução. A contribuição principal desta tese consiste na aplicação dessa visão para a otimização da descoberta de conhecimento a partir de dados não-classificados. Adicionalmente, são apresentadas algumas contribuições sobre o Modelo Neural Combinatório (MNC), um sistema híbrido neurossimbólico para classificação que elegemos como foco de trabalho. Quanto à principal contribuição, percebeu-se que a descoberta de conhecimento a partir de dados não-classificados, em geral, é dividida em dois subprocessos: identificação de agrupamentos (aprendizado não-supervisionado) seguida de classificação (aprendizado supervisionado). Esses subprocessos correspondem às tarefas de rotulagem dos itens de dados e obtenção das correlações entre os atributos da entrada e os rótulos. Não encontramos outra razão para que haja essa separação que as limitações inerentes aos algoritmos específicos. Uma dessas limitações, por exemplo, é a necessidade de iteração de muitos deles buscando a convergência para um determinado modelo. Isto obriga a que o algoritmo realize várias leituras da base de dados, o que, para Mineração de Dados, é proibitivo. A partir dos avanços em DCBD, particularmente com o desenvolvimento de algoritmos de aprendizado que realizam sua tarefa em apenas uma leitura dos dados, fica evidente a possibilidade de se reduzir o número de acessos na realização do processo completo. Nossa contribuição, nesse caso, se materializa na proposta de uma estrutura de trabalho para integração dos dois paradigmas e a implementação de um protótipo dessa estrutura utilizando-se os algoritmos de aprendizado ART1, para identificação de agrupamentos, e MNC, para a tarefa de classificação. É também apresentada uma aplicação no mapeamento de áreas homogêneas de plantio de trigo no Brasil, de 1975 a 1999. Com relação às contribuições sobre o MNC são apresentados: (a) uma variante do algoritmo de treinamento que permite uma redução significativa do tamanho do modelo após o aprendizado; (b) um estudo sobre a redução da complexidade do modelo com o uso de máquinas de comitê; (c) uma técnica, usando o método do envoltório, para poda controlada do modelo final e (d) uma abordagem para tratamento de inconsistências e perda de conhecimento que podem ocorrer na construção do modelo.
Resumo:
A classificação é uma das tarefas da Mineração de Dados. Esta consiste na aplicação de algoritmos específicos para produzir uma enumeração particular de padrões. Já a classificação é o processo de gerar uma descrição, ou um modelo, para cada classe a partir de um conjunto de exemplos dados. Os métodos adequados e mais utilizados para induzir estes modelos, ou classificadores, são as árvores de decisão e as regras de classificação. As regras e árvores de decisão são populares, principalmente, por sua simplicidade, flexibilidade e interpretabilidade. Entretanto, como a maioria dos algoritmos de indução particionam recursivamente os dados, o processamento pode tornar-se demorado, e a árvore construída pode ser muito grande e complexa, propensa ao overfitting dos dados, que ocorre quando o modelo aprende detalhadamente ao invés de generalizar. Os conjuntos de dados reais para aplicação em Mineração de Dados são, atualmente, muito grandes, e envolvem vários milhares de registros, sendo necessária, também, uma forma de generalizar estes dados. Este trabalho apresenta um novo modelo de indução de classificadores, em que o principal diferencial do algoritmo proposto é a única passada pelo conjunto de treinamento durante o processo de indução, bem como a sua inspiração proveniente de um Sistema Multiagente. Foi desenvolvido um protótipo, o Midas, que foi validado e avaliado com dados de repositórios. O protótipo também foi aplicado em bases de dados reais, com o objetivo de generalizar as mesmas. Inicialmente, foi estudado e revisado o tema de Descoberta de Conhecimento em Bases de Dados, com ênfase nas técnicas e métodos de Mineração de Dados. Neste trabalho, também são apresentadas, com detalhes, as árvores e regras de decisão, com suas técnicas e algoritmos mais conhecidos. Finalizando, o algoritmo proposto e o protótipo desenvolvido são apresentados, bem como os resultados provenientes da validação e aplicação do mesmo.
Resumo:
Este trabalho apresenta um estudo de caso de mineração de dados no varejo. O negócio em questão é a comercialização de móveis e materiais de construção. A mineração foi realizada sobre informações geradas das transações de vendas por um período de 8 meses. Informações cadastrais de clientes também foram usadas e cruzadas com informações de venda, visando obter resultados que possam ser convertidos em ações que, por conseqüência, gerem lucro para a empresa. Toda a modelagem, preparação e transformação dos dados, foi feita visando facilitar a aplicação das técnicas de mineração que as ferramentas de mineração de dados proporcionam para a descoberta de conhecimento. O processo foi detalhado para uma melhor compreensão dos resultados obtidos. A metodologia CRISP usada no trabalho também é discutida, levando-se em conta as dificuldades e facilidades que se apresentaram durante as fases do processo de obtenção dos resultados. Também são analisados os pontos positivos e negativos das ferramentas de mineração utilizadas, o IBM Intelligent Miner e o WEKA - Waikato Environment for Knowledge Analysis, bem como de todos os outros softwares necessários para a realização do trabalho. Ao final, os resultados obtidos são apresentados e discutidos, sendo também apresentada a opinião dos proprietários da empresa sobre tais resultados e qual valor cada um deles poderá agregar ao negócio.
Resumo:
Tendo como motivação o desenvolvimento de uma representação gráfica de redes com grande número de vértices, útil para aplicações de filtro colaborativo, este trabalho propõe a utilização de superfícies de coesão sobre uma base temática multidimensionalmente escalonada. Para isso, utiliza uma combinação de escalonamento multidimensional clássico e análise de procrustes, em algoritmo iterativo que encaminha soluções parciais, depois combinadas numa solução global. Aplicado a um exemplo de transações de empréstimo de livros pela Biblioteca Karl A. Boedecker, o algoritmo proposto produz saídas interpretáveis e coerentes tematicamente, e apresenta um stress menor que a solução por escalonamento clássico.
Resumo:
As árvores de decisão são um meio eficiente para produzir classificadores a partir de bases de dados, sendo largamente utilizadas devido à sua eficiência em relação ao tempo de processamento e por fornecer um meio intuitivo de analisar os resultados obtidos, apresentando uma forma de representação simbólica simples e normalmente compreensível, o que facilita a análise do problema em questão. Este trabalho tem, por finalidade, apresentar um estudo sobre o processo de descoberta de conhecimento em um banco de dados relacionado à área da saúde, contemplando todas as etapas do processo, com destaque à de mineração de dados, dentro da qual são aplicados classificadores baseados em árvores de decisão. Neste estudo, o conhecimento é obtido mediante a construção de árvores de decisão a partir de dados relacionados a um problema real: o controle e a análise das Autorizações de Internações Hospitalares (AIHs) emitidas pelos hospitais da cidade de Pelotas, conveniados ao Sistema Único de Saúde (SUS). Buscou-se encontrar conhecimentos que auxiliassem a Secretaria Municipal da Saúde de Pelotas (SMSP) na análise das AIHs, realizada manualmente, detectando situações que fogem aos padrões permitidos pelo SUS. Finalmente, os conhecimentos obtidos são avaliados e validados, possibilitando verificar a aplicabilidade das árvores no domínio em questão.
Resumo:
O trabalho busca analisar e entender se a aplicação de técnicas de Data mining em processos de aquisição de clientes de cartão de crédito, especificamente os que não possuem uma conta corrente em banco, podem trazer resultados positivos para as empresas que contam com processos ativos de conquista de clientes. Serão exploradas três técnicas de amplo reconhecimento na comunidade acadêmica : Regressão logística, Árvores de decisão, e Redes neurais. Será utilizado como objeto de estudo uma empresa do setor financeiro, especificamente nos seus processos de aquisição de clientes não correntistas para o produto cartão de crédito. Serão mostrados resultados da aplicação dos modelos para algumas campanhas passadas de venda de cartão de crédito não correntistas, para que seja possível verificar se o emprego de modelos estatísticos que discriminem os clientes potenciais mais propensos dos menos propensos à contratação podem se traduzir na obtenção de ganhos financeiros. Esses ganhos podem vir mediante redução dos custos de marketing abordando-se somente os clientes com maiores probabilidades de responderem positivamente à campanha. A fundamentação teórica se dará a partir da introdução dos conceitos do mercado de cartões de crédito, do canal telemarketing, de CRM, e das técnicas de data mining. O trabalho apresentará exemplos práticos de aplicação das técnicas mencionadas verificando os potenciais ganhos financeiros. Os resultados indicam que há grandes oportunidades para o emprego das técnicas de data mining nos processos de aquisição de clientes, possibilitando a racionalização da operação do ponto de vista de custos de aquisição.