964 resultados para Microscopic Observation
Resumo:
Dendrimers are highly branched polymeric nanoparticles whose structure and topology, largely, have determined their efficacy in a wide range of studies performed so far. An area of immense interest is their potential as drug and gene delivery vectors. Realizing this potential, depending on the nature of cell surface-dendrimer interactions, here we report controlled model membrane penetration and reorganization, using a model supported lipid bilayer and poly(ether imine) (PETIM) dendrimers of two generations. By systematically varying the areal density of the lipid bilayers, we provide a microscopic insight, through a combination of high resolution scattering, atomic force microscopy and atomistic molecular dynamics simulations, into the mechanism of PETIM dendrimer membrane penetration, pore formation and membrane re-organization induced by such interactions. Our work represents the first systematic observation of a regular barrel-like membrane spanning pore formation by dendrimers, tunable through lipid bilayer packing, without membrane disruption.
Resumo:
The deformation mechanism or styrene/n-butyl acrylate copolymer latex films with fiber symmetric crystalline structure subjected to uniaxial stretching was studied using synchrotron small-angle X-ray scattering technique. The fibers were drawn at angles or 0, 35, and 55 degrees with respect to the Fiber axis. In all cases, the microscopic deformation within the crystallites was Found to deviate from affine deformation behavior with respect to the macroscopic deformation ratio. Moreover, the extent of this deviation is different in the three cases. This peculiar behavior can be attributed to the relative orientation of the (111) plane of the crystals, the plane of densest packing, with respect to the stretching direction in each case. When the stretching direction coincides with the crystallographic (111) plane, which is the case for stretching directions of 0 and 55 degrees with respect to the fiber axis, the microscopic deformation deviates less from affine behavior than when the stretching direction is arbitrarily oriented with respect to the crystallographic (111) plan.
Resumo:
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal.
Microscopic evaluation of induced tooth movement in traumatized teeth: an experimental study in rats
Resumo:
The clinical management of orthodontic patients with dental trauma before or during the treatment is mainly founded on clinical experience, expert opinions, and individual case reports. It is proposed in the literature that teeth sustaining mild trauma with minor damage to the periodontium (e.g. subluxation) should be followed for a period of time before being subjected to orthodontic forces. A minimum period of 3 months has been proposed. In this study, we used an animal model to investigate whether shorter observation periods could be established in case of mild trauma. The periradicular region of rat molars was examined microscopically to determine the biological events of tooth movement started 15 and 30 days after intentional subluxation using an experimental method to induce dentoalveolar trauma. Thirty adult male Wistar rats were assigned to 6 groups (n = 5): Group 1 (control no trauma/orthodontic movement); Group 2: the animals received an orthodontic device and were sacrificed after 7 days; Groups 3 and 4: dentoalveolar trauma (subluxation) was experimentally induced by the application of an axial force of 900 cN on the occlusal surface of the maxillary right first molar, and the animals were sacrificed after 22 and 37 days, respectively; and Groups 5 and 6: 15 and 30 days, respectively, after force application, an orthodontic device was installed and the rats were sacrificed 7 days later. In G5 and G6, the periodontal ligament and pulp tissue were rich in cellular elements and blood vessels, the alveolar bone was preserved, and the root surface presented only very small areas of surface resorption (cementum), maintaining the characteristics of normality. In conclusion, the microscopic alterations in the gingival and periodontal tissues in response to an experimentally induced mild dentoalveolar trauma simulating subluxation were not sufficient to contraindicate starting the orthodontic movement 15 and 30 days after trauma.
Resumo:
BACKGROUND: The aim of this study was to develop an experimental model that allows to elude the potential role of the preexisting graft microvasculature for vascularization and mineralization of osteochondral grafts. ANIMALS AND METHODS: For that purpose, the II-IV metatarsals of fetal DDY-mice known to be nonvascularized at day 16 of gestation (M16) but vascularized at day 18 (M18) were freshly transplanted into dorsal skin fold chambers of adult DDY mice. Using intravital microscopy angiogenesis, leukocyte-endothelium interaction and mineralization were assessed for 12 days. RESULTS: Angiogenesis occurred at 32 hours in M18, but not before 57 hours in M16 (p = 0.002), with perfusion of these vessels at 42 hours (p = 0.005) and 65 hours (p = 0.1), respectively. Vessels reached a density three times as high as that of the recipient site at day 6, remaining constant until day 12 in M18, whereas in M16 vascular density increased from day 6 and reached that of M18 at day 12 (p = 0.04). Leukocyte-endothelium interaction showed sticker counts elevated by a factor of 4-5 in M18 as compared to M16. Mineralization of osteochondral grafts did not differ between M16 and M18, which significantly increased in both groups throughout the observation period. INTERPRETATION: We propose the faster kinetics in the angiogenic response to M18 and the elevated counts of sticking leukocytes to rest on the potential of establishing end-to-end anastomoses (inosculation) of the vascularized graft with recipient vessels.
Resumo:
The morphological and chemical changes occurring during the thermal decomposition of weddelite, CaC2O4·2H2O, have been followed in real time in a heating stage attached to an Environmental Scanning Electron Microscope operating at a pressure of 2 Torr, with a heating rate of 10 °C/min and an equilibration time of approximately 10 min. The dehydration step around 120 °C and the loss of CO around 425 °C do not involve changes in morphology, but changes in the composition were observed. The final reaction of CaCO3 to CaO while evolving CO2 around 600 °C involved the formation of chains of very small oxide particles pseudomorphic to the original oxalate crystals. The change in chemical composition could only be observed after cooling the sample to 350 °C because of the effects of thermal radiation.
Resumo:
The Raman spectrum of holmquistite, a Li-containing orthorhombic amphibole from Bessemer City, USA has been measured. The OH-stretching region is characterized by bands at 3661, 3646, 3634 and 3614 cm–1 assigned to 3 Mg–OH, 2 Mg + Fe2+–OH, Mg + 2Fe2+–OH and 3 Fe2+–OH, respectively. These Mg and Fe2+ cations are located at the M1 and M3 sites and have a Fe2+/(Fe2+ + Mg) ratio of 0.35. The 960–1110 cm–1 region represents the antisymmetric Si–O–Si and O–Si–O stretching vibrations. For holmquistite, strong bands are observed around 1022 and 1085 cm–1 with a shoulder at 1127 cm–1 and minor bands at 1045 and 1102 cm–1. In the region 650–800 cm–1 bands are observed at 679, 753 and 791 cm–1 with a minor band around 694 cm–1 attributed to the symmetrical Si–O–Si and Si–O vibrations. The region below 625 cm–1 is characterized by 14 vibrations related to the deformation modes of the silicate double chain and vibrations involving Mg, Fe, Al and Li in the various M sites. The 502 cm–1 band is a Li–O deformation mode while the 456, 551 and 565 cm–1 bands are Al–O deformation modes.