346 resultados para Microcystis smithii
Resumo:
This is the first experimental study to compare difference in the development of tolerance against toxic Microcystis among multi-species of cladocerans (Daphnia, Moina and Ceriodaphnia) pre-exposed to two M. aeruginosa PCC7820 strains (MC-containing and MC-free). Zooplankton were divided into S population (fed Scenedesmus), M-F population (fed Scenedesmus + MC-free Microcystis), and M-C population (fed Scenedesmus + MC-containing Microcystis). M-F and M-C populations were pre-exposed to Microcystis strains for 4 weeks, and their newborns were collected for experiments. A pre-exposure to MC-containing or MC-free Microcystis increased tolerance against toxic Microcystis. The marked increases in survival rate and median lethal time (LT50, 100-194% increase) in the M-C population of Ceriodaphnia suggest that small-sized cladocerans may develop stronger tolerance against Microcystis than large-sized ones when both groups are exposed to toxic Microcystis. This may explain why dominant Daphnia is usually replaced by small-sized cladocerans when cyanobacteria bloomed in summer in eutrophic lakes. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Effects of Microcystis blooms on the crustacean plankton were studied using enclosure experiments during July-September, 2000. Eight enclosures were set in the hypereutrophic Donghu Lake. Different nutrient concentrations through additional nutrient and sediment in enclosures were expected to result in different abundance of Micropystis. From July to early August, the phytoplankton community was dominated by Chlorophyta, Cryptophyta, Bacillariophyta and Cyanophyta other than Microcystis aeruginosa. M. aeruginosa showed a rapid increase during early August in all enclosures and predominated. Crustacean plankton was dominated by the herbivorous Moina micrura, Diaphanosoma brachyurum and Ceriodaphnia cornuta, and the predaceous Mesocyclops sp. and Thermocyclops taihokuensis. During the pre-bloom period, the dynamics of M. micrura population appeared to be mainly affected by the predaceous cyclopoids. With the development of Microcystis blooms, such interaction between M. micrura and cyclopoids seemed weakened, especially when the Microcystis biomass was high. But there was no apparent influence on the interaction between Leptodora kindti and its zooplanktonic prey. The density of two cyclopoids decreased with the enhancement of Microcystis. The density decline of M. micrura was caused by both predation and inhibition by Micropystis. The low food availability of other edible phytoplankton during the blooms led to low densities of both C. cornuta and D. brachyurum by late August. It appears that dense Microcystis blooms exert strong negative effects on the herbivorous cladocerans and the predaceous cyclopoids.
Resumo:
Three enclosures (10 x 10 x 1.5-1.3 m in depth) were set beside Dianch Lake, Kunming, People's Republic of China, for the period from July 28 to August 26, 2002. The enclosures were filled with cyanobacterial (Microcystis aeruginosa) water bloom-containing lake water. Lake sediment that contained macrophytes and water chestnut seeds was spread over the entire bottom of each enclosure. Initially, 10 g/m(2) of lysine was sprayed in Enclosure B, and 10 g/m(2) each of lysine and malonic acid were sprayed together in Enclosure C. Enclosure A remained untreated and was used as a control. The concentrations of lysine, malonic acid, chlorophyll a, and microcystin as well as the cell numbers of phytoplankton such as cyanobacteria, diatom, and euglena were monitored. On day 1 of the treatment, formation of cyanobacterial blooms almost ceased in Enclosures B and C, although Microcystis cells in the control still formed blooms. On day 7 Microcystis cells in Enclosure B that had been treated with lysine started growing again, whereas growth was not observed in Microcystis cells in Enclosure C, which had been treated with lysine and malonic acid. On day 28 the surface of Enclosure B was covered with water chestnut (Trapa spp.) and the Microcystis blooms again increased. In contrast, growth of macrophytes (Myriophllum spicatum and Potamogeton crispus) was observed in Enclosure C; however, no cyanobacterial blooms were observed. Lysine and malonic acid had completely decomposed. The microcystin concentration on day 28 decreased to 25% of the initial value, and the pH shifted from the initial value of 9.2 to 7.8. We concluded that combined treatment with lysine and malonic acid selectively controlled toxic Microcystis water blooms and induced the growth of macrophytes. (c) 2005 Wiley Periodicals, Inc.
Resumo:
We evaluated the toxic effect of Microcystis aeruginosa on Daphnia carinata King using survival rate, population growth rate, and body length. When fed Microcystis aerugionsa PCC7820 and liberated colonial Microcystis spp., all D. carinata died within five days. When fed a mixture of M. aeruginosa PCC7820 and the green alga Scenedesmus obliquus, the survival rate, population growth rate, and body length of D. carinata generally increased. The survival rates were all above 80% after ten days. However, with liberated colonial M. aeruginosa, the toxic effect on D. carinata was more pronounced, and only at higher concentration of S. obliquus did that toxic effect abate. Our results indicated that green algae could greatly weaken the toxic effect of cyanobacteria.
Resumo:
Using degenerate primers based on conserved regions of the UDP-glucose dehydrogenase (UDPGDH) gene, an initial 476-bp DNA fragment was amplified from the water-bloom forming cyanobacterium, Microcystis aeruginosa FACHB 905. TAIL-PCR and ligation-mediated PCR were used to amplify the flanking regions to isolate an about 2.5-kb genomic DNA fragment. Sequence analysis revealed an ORF encoding a putative 462 amino acid protein, designated Mud for Microcystis UDPGDH. The Mud amino acid sequence is closely related to UDPGDH sequences from cyanobacterium Synechocystis PCC6803 (73% identity, 81% similarity), and bacterium Bacillus subtilis (51% identity and 67% similarity). The cloned mud gene was expressed in Escherichia coli using the pGEX-4T-1 fusion expression vector system to generate a GST-Mud fusion protein that exhibited UDPGDH activity. The cytosolic fraction of M aeruginosa FACHB 905 was subjected to Western analysis with an anti-Mud antibody, which revealed a single band of approximately 49 kD, consistent with the deduced molecular mass of the enzyme. The Mud protein could thus be characterized as a UDP-glucose dehydrogenase, which was a key enzyme for polysaccharide synthesis and has, for the first time, been studied in algae.
Resumo:
A cyanobacterial strain, which produced high content of microcystin-LR (MC-LR) but no rnicrocystin-RR (MC-RR), was isolated from the hypertrophic Dianchi Lake in China and identified as Microcystis aeruginosa DC-1. Effects of nitrogen containing chemicals and trace elements on the growth and the production of MC-LR by this strain were Studied. In the presence of bicine, compared with urea and ammonium, nitrate greatly promoted the growth and the production of MC-LR. However, leucine and arginine, which were the constitutional components in the molecular structure of MC-LR or RR, inhibited the production of MC-LR. Iron and silicon up to 10mg/L had little effects on the growth of M. aeruginosa DC-1, but the production of MC-LR was apparently enhanced. Under all conditions studied here, only MC-LR but no RR was detected within the cells of M. aeruginosa DC-1. Thus, chemical forms of nitrogen, rather than the usually concerned the total nitrogen, Lind trace elements played important roles in the production of MC toxins during cyanobacterial blooms.
Resumo:
The feeding rate of the copepod Mesocyclops notius on two species of cladocerans (Daphnia carinata and Ceriodaphnia cornuta) decreased with increasing environmental concentration of 64-122 mum colonial Microcystis spp. Rate of copepod feeding on Moina micrura was unaffected by the presence of Microcystis spp. Mesocyclops notius rarely preyed on Diaphanosoma brachyurum.
Resumo:
In the paper the kinetic effects of La3+ and Ce4+ on the growth of Microcystis and the accumulation kinetics of Microcystis in the single and combined systems of La3+ and Ce4+ were studied. The mechanism of the effects of La3+ and Ce4+ on the growth of Microcystis and their accumulation kinetics were also discussed. In the single system, La3+ stimulated the growth of Microcystis at initial concentrations below 2 mg / 1, but inhibited it above 2 mg / 1. Ce4+ accelerated the growth of Microcystis at initial concentrations below 0.2 mg / 1 and inhibited at above 0.2 mg /l. Furthermore, the stimulation weakened with the increase of initial concentrations of La3+ and Ce4+. In the combined system, the growth of Microcystis was accelerated in the over all cases. In the single system, the amount of La3+ and Ce4+ uptake was more at higher initial concentrations than at lower ones. At the same initial concentrations, La3+ and Ce4+ uptake in the combined system was less than that in the single system. The kinetic process of La3+ and Ce4+ adsorpted by Microcystis can be explained with the second order kinetics adsorption model.
Resumo:
An enclosure experiment in the shallow, subtropical Lake Donghu, China, was performed in the summer of 2001 to examine the effect of TN:TP (total phosphorus) ratios and P-reduction on the occurrence of Microcysitis blooms. The treatments were performed with enough amounts of N but with different amounts of P in the water column and sediment. Microcystis blooms occurred in the enclosures either with an initial TN:TP <29 or TN:TP >29 where the nutrients (N, P) were high enough. Microcysitis blooms never occurred in the treatments with low P concentration in spite of the presence of sufficient N. The P-rich sediments served as an important source for the P supply in the water column, and such a process was activated greatly by the outburst of Microcystis blooms which pumped up selectively P from the sediments and thus decreased the TN:TP ratios. Therefore, the low TN:TP ratio is not a cause but rather a result of Microcystis blooms. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
To clarify the possible influence of Microcystis blooms on the exchange of phosphorus (P) between sediment and lake water, an enclosure experiment was conducted in the hypereutrophic subtropical Lake Donghu during July-September 2000. Eight enclosures were used: six received sediment while two were sediment-free. In mid-August, Microcystis blooms developed in all the enclosures. There was a persistent coincidence between the occurrence of Microcystis blooms and the increase of both total P (TP) and soluble reactive P (SRP) concentrations in the water of the enclosures with sediments. In sediment-free enclosures, TP and SRP concentrations remained rather stable throughout the experiment, in spite of the appearance of Microcystis blooms. The results indicate that Microcystis blooms induced massive release of P from the sediment, perhaps mediated by high pH caused by intense algal photosynthesis, and/or depressed concentrations of nitrate nitrogen (NO3-N). (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
We studied in the laboratory the population growth rates of four cladocerans fed both with decomposed Microcystis aeruginosa and with a mixture of fresh colonial M. aeruginosa and Scenedesmus obliquus. The neonates of Diqphanosoma brachyurum and Daphnia carinata were able to develop into adults when they were fed with <64mum decomposed M. aeruginosa, while those of Moina micrura could not use decomposed M. aeruginosa. The population growth rate of the largest species, D. carinata, was less affected by the presence of fresh colonial M. aeruginosa than the other three species. D. carinata obtained the highest growth rate at a biomass level of 10 mg L-1 fresh colonial M. aeruginosa, indicating that, to some extent, it can use colonial M. aeruginosa at a size range of 64-112mum. The population growth rate of M. micrura was negatively correlated with fresh colonial M. aeruginosa within a range of 10-100 mg L-1. The population growth rates of D. brachyurum and Ceriodaphnia cornuta were remarkably decreased by fresh colonial M. aeruginosa, although no significant difference was found within the M. aeruginosa biomass range of 10-100 mg L-1 for either cladoceran. At a biomass level of 50 mg L-1 M. aeruginosa, the population growth rates of the four cladocerans positively correlated with S. obliquus biomass within a range of 0.1-5.0 mg L-1. Our results indicate that the zooplankton community under bloom condition is shaped by the quantity of both M. aeruginosa and other edible algae.