995 resultados para Microchannel Flow
Resumo:
The area of microfluidics has increased in popularity with such fields as MEMS, microreactors, microscaleheat exchangers, etc. A comprehensive understanding of dissipation mechanisms for fluid flow in microchannels is required to accurately predict the behavior in these small systems. Tests were performed using a constant pressure potential created by two immiscible fluids juxtaposed in a microchannel. This study focused on the flow and dissipation mechanisms in round and square microchannels. There are four major dissipation mechanisms in slug flow; wall shear, dissipation at the contact line, menisci interaction and the stretching of the interface. A force balance between the internal driving potential, viscous drag and interface stretching was used to develop a model for the prediction of the velocity of a bislug in a microchannel. Interface stretching is a dissipation mechanism that has been included due to the unique system properties and becomes increasingly more important as the bislug decreases in length.
Resumo:
Coulometric nanotitrations were realized in a microchannel system using a continuous-flow titration technique with a triangle current-time profile. Redox and acid-base titrations were carried out on Fe(II) and nitric acid samples, respectively, with the same nanotitrator device. A linear relation between the concentration and the coulometric current transferred to the solution was found. The advantages of this universally applicable nanotitrator are fast response, low sample volume, high sensitivity, and high reproducibility as well as the convenience of handling an automated analyzer of the flow-through type.
Resumo:
Recent technological developments have made it possible to design various microdevices where fluid flow and heat transfer are involved. For the proper design of such systems, the governing physics needs to be investigated. Due to the difficulty to study complex geometries in micro scales using experimental techniques, computational tools are developed to analyze and simulate flow and heat transfer in microgeometries. However, conventional numerical methods using the Navier-Stokes equations fail to predict some aspects of microflows such as nonlinear pressure distribution, increase mass flow rate, slip flow and temperature jump at the solid boundaries. This necessitates the development of new computational methods which depend on the kinetic theory that are both accurate and computationally efficient. In this study, lattice Boltzmann method (LBM) was used to investigate the flow and heat transfer in micro sized geometries. The LBM depends on the Boltzmann equation which is valid in the whole rarefaction regime that can be observed in micro flows. Results were obtained for isothermal channel flows at Knudsen numbers higher than 0.01 at different pressure ratios. LBM solutions for micro-Couette and micro-Poiseuille flow were found to be in good agreement with the analytical solutions valid in the slip flow regime (0.01 < Kn < 0.1) and direct simulation Monte Carlo solutions that are valid in the transition regime (0.1 < Kn < 10) for pressure distribution and velocity field. The isothermal LBM was further extended to simulate flows including heat transfer. The method was first validated for continuum channel flows with and without constrictions by comparing the thermal LBM results against accurate solutions obtained from analytical equations and finite element method. Finally, the capability of thermal LBM was improved by adding the effect of rarefaction and the method was used to analyze the behavior of gas flow in microchannels. The major finding of this research is that, the newly developed particle-based method described here can be used as an alternative numerical tool in order to study non-continuum effects observed in micro-electro-mechanical-systems (MEMS).
Resumo:
Combined conduction–convection–radiation heat transfer is investigated numerically in a micro-channel filled with a saturated cellular porous medium, with the channel walls held at a constant heat flux. Invoking the velocity slip and temperature jump, the thermal behaviour of the porous–fluid system are studied by considering hydrodynamically fully developed flow and applying the Darcy–Brinkman flow model. One energy equation model based on the local thermal equilibrium condition is adopted to evaluate the temperature field within the porous medium. Combined conduction and radiation heat transfer is treated as an effective conduction process with a temperature-dependent effective thermal conductivity. Results are reported in terms of the average Nusselt number and dimensionless temperature distribution, as a function of velocity slip coefficient, temperature jump coefficient, porous medium shape parameter and radiation parameters. Results show that increasing the radiation parameter (Tr)(Tr) and the temperature jump coefficient flattens the dimensionless temperature profile. The Nusselt numbers are more sensitive to the variation in the temperature jump coefficient rather than to the velocity slip coefficient. Such that for high porous medium shape parameter, the Nusselt number is found to be independent of velocity slip. Furthermore, it is found that as the temperature jump coefficient increases, the Nusselt number decrease. In addition, for high temperature jump coefficients, the Nusselt number is found to be insensitive to the radiation parameters and porous medium shape parameter. It is also concluded that compared with the conventional macro-channels, wherein using a porous material enhances the rate of heat transfer (up to about 40 % compared to the clear channel), insertion of a porous material inside a micro-channel in slip regime does not effectively enhance the rate of heat transfer that is about 2 %.
Resumo:
Phase change problems arise in many practical applications such as air-conditioning and refrigeration, thermal energy storage systems and thermal management of electronic devices. The physical phenomenon in such applications are complex and are often difficult to be studied in detail with the help of only experimental techniques. The efforts to improve computational techniques for analyzing two-phase flow problems with phase change are therefore gaining momentum. The development of numerical methods for multiphase flow has been motivated generally by the need to account more accurately for (a) large topological changes such as phase breakup and merging, (b) sharp representation of the interface and its discontinuous properties and (c) accurate and mass conserving motion of the interface. In addition to these considerations, numerical simulation of multiphase flow with phase change introduces additional challenges related to discontinuities in the velocity and the temperature fields. Moreover, the velocity field is no longer divergence free. For phase change problems, the focus of developmental efforts has thus been on numerically attaining a proper conservation of energy across the interface in addition to the accurate treatment of fluxes of mass and momentum conservation as well as the associated interface advection. Among the initial efforts related to the simulation of bubble growth in film boiling applications the work in \cite{Welch1995} was based on the interface tracking method using a moving unstructured mesh. That study considered moderate interfacial deformations. A similar problem was subsequently studied using moving, boundary fitted grids \cite{Son1997}, again for regimes of relatively small topological changes. A hybrid interface tracking method with a moving interface grid overlapping a static Eulerian grid was developed \cite{Juric1998} for the computation of a range of phase change problems including, three-dimensional film boiling \cite{esmaeeli2004computations}, multimode two-dimensional pool boiling \cite{Esmaeeli2004} and film boiling on horizontal cylinders \cite{Esmaeeli2004a}. The handling of interface merging and pinch off however remains a challenge with methods that explicitly track the interface. As large topological changes are crucial for phase change problems, attention has turned in recent years to front capturing methods utilizing implicit interfaces that are more effective in treating complex interface deformations. The VOF (Volume of Fluid) method was adopted in \cite{Welch2000} to simulate the one-dimensional Stefan problem and the two-dimensional film boiling problem. The approach employed a specific model for mass transfer across the interface involving a mass source term within cells containing the interface. This VOF based approach was further coupled with the level set method in \cite{Son1998}, employing a smeared-out Heaviside function to avoid the numerical instability related to the source term. The coupled level set, volume of fluid method and the diffused interface approach was used for film boiling with water and R134a at the near critical pressure condition \cite{Tomar2005}. The effect of superheat and saturation pressure on the frequency of bubble formation were analyzed with this approach. The work in \cite{Gibou2007} used the ghost fluid and the level set methods for phase change simulations. A similar approach was adopted in \cite{Son2008} to study various boiling problems including three-dimensional film boiling on a horizontal cylinder, nucleate boiling in microcavity \cite{lee2010numerical} and flow boiling in a finned microchannel \cite{lee2012direct}. The work in \cite{tanguy2007level} also used the ghost fluid method and proposed an improved algorithm based on enforcing continuity and divergence-free condition for the extended velocity field. The work in \cite{sato2013sharp} employed a multiphase model based on volume fraction with interface sharpening scheme and derived a phase change model based on local interface area and mass flux. Among the front capturing methods, sharp interface methods have been found to be particularly effective both for implementing sharp jumps and for resolving the interfacial velocity field. However, sharp velocity jumps render the solution susceptible to erroneous oscillations in pressure and also lead to spurious interface velocities. To implement phase change, the work in \cite{Hardt2008} employed point mass source terms derived from a physical basis for the evaporating mass flux. To avoid numerical instability, the authors smeared the mass source by solving a pseudo time-step diffusion equation. This measure however led to mass conservation issues due to non-symmetric integration over the distributed mass source region. The problem of spurious pressure oscillations related to point mass sources was also investigated by \cite{Schlottke2008}. Although their method is based on the VOF, the large pressure peaks associated with sharp mass source was observed to be similar to that for the interface tracking method. Such spurious fluctuation in pressure are essentially undesirable because the effect is globally transmitted in incompressible flow. Hence, the pressure field formation due to phase change need to be implemented with greater accuracy than is reported in current literature. The accuracy of interface advection in the presence of interfacial mass flux (mass flux conservation) has been discussed in \cite{tanguy2007level,tanguy2014benchmarks}. The authors found that the method of extending one phase velocity to entire domain suggested by Nguyen et al. in \cite{nguyen2001boundary} suffers from a lack of mass flux conservation when the density difference is high. To improve the solution, the authors impose a divergence-free condition for the extended velocity field by solving a constant coefficient Poisson equation. The approach has shown good results with enclosed bubble or droplet but is not general for more complex flow and requires additional solution of the linear system of equations. In current thesis, an improved approach that addresses both the numerical oscillation of pressure and the spurious interface velocity field is presented by featuring (i) continuous velocity and density fields within a thin interfacial region and (ii) temporal velocity correction steps to avoid unphysical pressure source term. Also I propose a general (iii) mass flux projection correction for improved mass flux conservation. The pressure and the temperature gradient jump condition are treated sharply. A series of one-dimensional and two-dimensional problems are solved to verify the performance of the new algorithm. Two-dimensional and cylindrical film boiling problems are also demonstrated and show good qualitative agreement with the experimental observations and heat transfer correlations. Finally, a study on Taylor bubble flow with heat transfer and phase change in a small vertical tube in axisymmetric coordinates is carried out using the new multiphase, phase change method.
Resumo:
Two dimensional flow of a micropolar fluid in a porous channel is investigated. The flow is driven by suction or injection at the channel walls, and the micropolar model due to Eringen is used to describe the working fluid. An extension of Berman's similarity transform is used to reduce the governing equations to a set of non-linear coupled ordinary differential equations. The latter are solved for large mass transfer via a perturbation analysis where the inverse of the cross-flow Reynolds number is used as the perturbing parameter. Complementary numerical solutions for strong injection are also obtained using a quasilinearisation scheme, and good agreement is observed between the solutions obtained from the perturbation analysis and the computations.
Resumo:
-