950 resultados para Micro-structural characterization
Resumo:
The present work deals with the complexation of Schiff bases of aroylhydrazines with various transition metal ions. The hydrazone systems selected for study have long 7I:-delocalized chain in the ligand molecule itself, which get intensified due to metal-to-ligand or ligand-to-metal charge transfer excitations upon coordination. Complexation with metal ions like copper, nickel, cobalt, manganese, iron, zinc and cadmium are tried. Various spectral techniques are employed for characterization. The structures of some complexes have been well established by single crystal X-ray diffraction studies. The nonIinaer optical studies of the ligands and complexes synthesized have been studied by hyper-Rayleigh scattering technique.The work is presented in seven chapters and the last one deals with summary and conclusion. One of the hydrazone system selected for study proved that it could give rise to polymeric metal complexes. Some of the copper, nickel, zinc and cadmium complexes showed non-linear optical activity. The NLO studies of manganese and iron showed negative result, may be due to the inversion centre of symmetry within the molecular lattice.
Resumo:
Activation energy for crystallization (Ec) is a pertinent parameter that decides the application potential of many metallic glasses and is proportional to the crystallization temperature. Higher crystallization temperatures are desirable for soft magnetic applications, while lower values for data storage purposes. In this investigation, from the heating rate dependence of peak crystallization temperature Tp, the Ec values have been evaluated by three different methods for metglas 2826 MB (Fe40Ni38B18Mo4) accurately. The Ec values are correlated with the morphological changes, and the structural evolution associated with annealing temperatures is discussed.
Resumo:
In zebrafish, germ cells are responsible for transmitting the genetic information from one generation to the next. During the first cleavages of zebrafish embryonic development, a specialized part of the cytoplasm known as germ plasm, is responsible of committing four blastomeres to become the progenitors of all germ cells in the forming embryo. Much is known about how the germ plasm is spatially distributed in early stages of primordial germ cell development, a process described to be dependant on microtubules and actin. However, little is known about how the material is inherited after it reorganizes into a perinuclear location, or how is the symmetrical distribution regulated in order to ensure proper inheritance of the material by both daughter cells. It is also not clear whether there is a controlled mechanism that regulates the number of granules inherited by the daughter cells, or whether it is a random process. We describe the distribution of germ plasm material from 4hpf to 24hpf in zebrafish primordial germ cells using Vasa protein as marker. Vasa positive material appears to be conglomerate into 3 to 4 big spherical structures at 4hpf. While development progresses, these big structures become smaller perinuclear granules that reach a total number of approximately 30 at 24hpf. We investigated how this transformation occurs and how the minus-end microtubule dependent motor protein Dynein plays a role in this process. Additionally, we describe specific colocalization of microtubules and perinuclear granules during interphase and more interestingly, during all different stages of cell division. We show that distribution of granules follow what seems to be a regulated distribution: during cells division, daughter cells inherit an equal number of granules. We propose that due to the permanent colocalization of microtubular structures with germinal granules during interphase and cell division, a coordinated mechanism between these structures may ensure proper distribution of the material among daughter cells. Furthermore, we show that exposure to the microtubule-depolymerizing drug nocodazole leads to disassembly of the germ cell nuclear lamin matrix, chromatin condensation, and fusion of granules to a big conglomerate, revealing dependence of granular distribution on microtubules and proper nuclear structure.
Resumo:
Blue [{Cu(2,2'-bipy)(2)}(2){alpha-SiW12O40}] (bipy = bipyridyl) (1) and pale yellow [Mn(2,2'-bipy)(3)](2)[alpha-SiW12O40] (2) have been synthesized hydrothermally and characterized by IR spectroscopy and single crystal X-ray structure analysis. In 1, the [alpha-SiW12O40](4-) ion acts as a bridge between the two [{Cu(2,2'-bipy)(2)](2+) moieties via coordination through the terminal oxygen atoms, while in 2, the [Mn(2,2'-bipy)(3)](2+) ion balances the charge on the polyoxo anion without forming any covalent bond. To the best of our knowledge, this is the first example of transition metal-mediated transformation of [alpha-SiW9O34](10-) to [alpha-SiW12O40](4-).
Resumo:
Three copper(II) complexes, [CuL1], [CuL2] and [CuL3] where L-1, L-2 and L-3 are the tetradentate di-Schiff-base ligands prepared by the condensation of acetylacetone and appropriate diamines (e.g. 1,2-diaminoethane, 1,2-diaminopropane and 1,3-diaminopropane, respectively) in 2:1 ratios, have been prepared. These complexes act as host molecules and include a guest sodium ion by coordinating through the oxygen atoms to result in corresponding new trinuclear complexes, [(CuL1)(2)Na(ClO4)(H2O)][CuL1], [(CuL2)(2)Na(ClO4)(H2O)] (2) and [(CuL3)(2)Na(ClO4)(H2O)] (3) when crystallized from methanol solution containing sodium perchlorate. All three complexes have been characterized by single crystal X-ray crystallography. In all the complexes, the sodium cation has a six-coordinate distorted octahedral environment being bonded to four oxygen atoms from two Schiff-base complexes of Cu(II) in addition to a perchlorate anion and a water molecule. The copper atoms are four coordinate in a square planar environment being bonded to two oxygen atoms and two nitrogen atoms of the Schiff-base ligand. The variable temperature susceptibilities for complexes 1-3 were measured over the range 2-300 K. The isotropic Hamiltonian, H = g(1)beta HS1 + g(2)beta HS2 + J(12)S(1)S(2) + g(3)beta HS3 for complex 1 and H = g(1)beta HS1 + g2 beta HS2 +J(12)S(1)S(2) for complexes 2 and 3 has been used to interpret the magnetic data. The best fit parameters obtained are: g(1) = g(2) = 2.07(0), J = - 1.09(1) cm(-1) for complex 1, g(1) = g(2) = 2.06(0), J = -0.55(1) cm(-1) for complex 2 and g1 = g2 = 2.07(0).J = -0.80(1) cm(-1) for 3. Electrochemical studies displayed an irreversible Cu(II)/Cu(I) one-electron reduction process. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
A simple general route of obtaining very stable octacoordinated non-oxovanadium( IV) complexes of the general formula VL2 (where H2L is a tetradentate ONNO donor) is presented. Six such complexes (1-6) are adequately characterized by elemental analysis, mass spectrometry, and various spectroscopic techniques. One of these compounds (1) has been structurally characterized. The molecule has crystallographic 4 symmetry and has a dodecahedral structure existing in a tetragonal space group P4n2. The non-oxo character and VL2 stoichiometry for all of the complexes are established from analytical and mass spectrometric data. In addition, the non-oxo character is clearly indicated by the complete absence of the strong nu(v=o) band in the 925-1025 cm(-1) region, which is a signature of all oxovanadium species. The complexes are quite stable in open air in the solid state and in solution, a phenomenon rarely observed in non-oxovanadium(IV) or bare vanadium(IV) complexes.
Resumo:
The vinylogous aldol reaction between appropriate aldehydes and furan-based silyloxy diene synthon generated from 3-benzyl-5H-furan-2-one (3) afforded two truncated lactone analogues [compounds (4) and (5)] of nostoclides (2). The compounds were fully characterized by IR, NMR (H-1 and C-13), 2D NMR spectroscopy experiments (HMBC, HSQC and NOESY), MS spectrometry and X-ray crystallography. Compounds (4) and (5) crystallized in the space group P2(1)2(1)2(1) and P2(1)/c, respectively. Although expected correlations between hydrogen atoms in spatial close proximity were not observed for compound (5) using NMR, the stereochemistry of the exocyclic double bond of both (4) and (5) was unambiguously determined to be Z and E, respectively, using X-ray crystallography. The packing of both compounds within the crystal are stabilized by non-classical inter-molecular hydrogen bonds. DFT calculations (B3LYP/6-31+G* level) confirmed that the crystal structures possessed the lowest energies in the gas phase when compared to their geometric isomers. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Senescence of plant organs is a genetically controlled process that regulates cell death to facilitate nutrient recovery and recycling, and frequently precedes, or is concomitant with, ripening of reproductive structures. In Arabidopsis thaliana, the seeds are contained within a silique, which is itself a photosynthetic organ in the early stages of development and undergoes a programme of senescence prior to dehiscence. A transcriptional analysis of the silique wall was undertaken to identify changes in gene expression during senescence and to correlate these events with ultrastructural changes. The study revealed that the most highly up-regulated genes in senescing silique wall tissues encoded seed storage proteins, and the significance of this finding is discussed. Global transcription profiles of senescing siliques were compared with those from senescing Arabidopsis leaf or petal tissues using microarray datasets and metabolic pathway analysis software (MapMan). In all three tissues, members of NAC and WRKY transcription factor families were up-regulated, but components of the shikimate and cell-wall biosynthetic pathways were down-regulated during senescence. Expression of genes encoding ethylene biosynthesis and action showed more similarity between senescing siliques and petals than between senescing siliques and leaves. Genes involved in autophagy were highly expressed in the late stages of death of all plant tissues studied, but not always during the preceding remobilization phase of senescence. Analyses showed that, during senescence, silique wall tissues exhibited more transcriptional features in common with petals than with leaves. The shared and distinct regulatory events associated with senescence in the three organs are evaluated and discussed.
Resumo:
The present work reports the chemistry of a few oxidovanadium(IV) and (V) complexes of the ONS chelating ligand S-benzyl-beta-N-(2-hydroxyphenylethylidine) dithiocarbazate (H2L). Major objective of this work is to arrive at some general conclusions about the influence of binding environment generated by the replacement of an O-donor center by a S-donor point in a ligand (of a similar arrangement of the other O- and N-donor points) on the redox behavior and on the structural features of comparable [VO(OEt)(ONS)] and [VO(OEt)(ONO)] complexes. Synthesis, characterization by various physicochemical techniques (UV-Vis, IR, EPR and elemental analysis), exploration of electrochemical activity of the oxidovanadium(V) complex [(VO)-O-V(OEt) L] (1), the mixed ligand complex [(VO)-O-V(N-O)L] (3) (where N-O is the mono anion of 8-hydroxyquinoline) and a binuclear complex [(VO)-O-V(OEt)L](2)(mu-4,4'-bipy) (2) are reported. Similar studies on of mixed ligand oxidovanadium(IV) complexes of the formula [(VO)-O-V(N-N)L] (4,5) (where N-N = 2,2'-bipy and o-phen) are also presented here. The [(VO)-O-V(OEt)L] complex is pentacoordinated and distorted square pyramidal, while the [V-IV(N-N)L] complexes are hexacoordinated and octahedral. Structural features of the complex 1 were compared with the corresponding aspects of the previously reported analogous complex [(VO)-O-V(OEt)(ONO)] (1').
Resumo:
The ligand 2,2'-[(E)-diazene-1,2-diyldicarbonothioyl]diphenol has been synthesised in situ by aerial oxidation of o-hydroxythiobenzhydrazide [H(htbh)] in presence of rhodium(III) in DMSO. Each ligand binds two RhO2+ ions through its N and S atoms and the O atom of its deprotonated hydroxy group. Each RhO2+ contains two cis-Rh = O bonds. The sixth coordination site of each rhodium(v) is occupied by the O of DMSO.
Resumo:
DNA-strand exchange is a vital step in the recombination process, of which a key intermediate is the four-way DNA Holliday junction formed transiently in most living organisms. Here, the single-crystal structure at a resolution of 2.35 Å of such a DNA junction formed by d(CCGGTACCGG)2, which has crystallized in a more highly symmetrical packing mode to that previously observed for the same sequence, is presented. In this case, the structure is isomorphous to the mismatch sequence d(CCGGGACCGG)2, which reveals the roles of both lattice and DNA sequence in determining the junction geometry. The helices cross at the larger angle of 43.0° (the previously observed angle for this sequence was 41.4°) as a right-handed X. No metal cations were observed; the crystals were grown in the presence of only group I counter-cations.
Resumo:
The synthesis and structural characterization of a novel oxoperoxovanadium(v) complex [VO(O-2)(PAH)-(phen)] containing the ligands 2-phenylacetohydroxamic acid (PAHH) and 1,10-phenanthroline (phen) has been accomplished. The oxoperoxovanadium(v) complex was found to mimic both vanadate-dependent haloperoxidase (VHPO) activity as well as nuclease activity through effective interaction with DNA. The complex is the first example of a structurally characterized stable oxoperoxovanadium(v) complex with a coordinated bi-dentate hydroximate moiety (-CONHO-) from 2-phenylacetohydroximate (PAH). The oxoperoxovanadium(v) complex has been used as catalyst for the peroxidative bromination reaction of some unsaturated alcohols (e.g. 4-pentene-1-ol, 1-octene-3-ol and 9-decene-1-ol) in the presence of H2O2 and KBr. The catalytic products have been characterized by GC-MS analysis and spectrophotometric methods. The DNA binding of this complex has been established with CT DNA whereas the DNA cleavage was demonstrated with plasmid DNA. The interactions of the complex with DNA have been monitored by electronic absorption and fluorescence emission spectroscopy. Viscometric measurements suggest that the compound is a DNA intercalator. The nuclease activity of this complex was confirmed by gel electrophoresis studies.
Resumo:
Several bis-malonatooxidovanadium(IV) complexes of the general type [M(2)(H2(O))(n)][VO(mal)(2)(H(2)O)] (where M = Li(1), Na(2), K(3), Cs(4) and NH4(5); n = 3.5, 1, 3, 1 and 1, respectively) were isolated in good yield and high purity. These complexes were fully characterized by various physicochemical techniques (elemental analysis, UV- Vis, IR, EPR, CV, etc.) complexes 1, 2 and 3 were structurally characterized by single crystal X- ray diffraction technique. In vivo antidiabetic properties of bis- malonato complexes 1, 2, 3 and 5 have been studied using Streptozotocin induced diabetic rats. Significant lowering of blood sugar level has been noticed. At the same time these complexes were found to regulate secondary pathophysiological complications like liver damage and lowering of the total antioxidant status (TAS) in diabetic rats. Results of these study are expected to a expand the possibility of designing new oxidovanadium(IV) complexes of O, O chelating ligands with significant antidiabetic properties
Resumo:
The synthesis of two new sodium perchlorate adducts (1:2 and 1:3) with copper(II) "ligand-complexes'' is reported. One adduct is trinuclear [(CuL(1))(2)NaClO(4)] (1) and the other is tetranuclear [(CuL(2))(3)Na]ClO(4)center dot EtOH (2). The ligands are the tetradentate di-Schiff base of 1,3-propanediamines and salicylaldehyde (H(2)L(1)) or 2-hydroxyacetophenone (H(2)L(2)). Both complexes have been characterized by X-ray single crystal structure analyses. In both structures, the sodium cation has a six-coordinate distorted octahedral environment being bonded to four oxygen atoms from two Schiff-base complexes in addition to a chelated perchlorate anion in 1 and to six oxygen atoms from three Schiff-base complexes in 2. We have carried out a DFT theoretical study (RI-B97-D/def2-SVP level of theory) to compute and compare the formation energies of 1:2 and 1:3 adducts. The DFT study reveals that the latter is more stabilized than the former. The X-ray crystal structure of 1 shows that the packing of the trinuclear unit is controlled by unconventional C-H center dot center dot center dot O H-bonds and Cu(2+)-pi non-covalent interactions. These interactions explain the formation of 1 which is a priori disfavored with respect to 2.