938 resultados para Micro electro mechanical system
Resumo:
We demonstrate the effect of mechanical strain on the electrostrictive behavior of catalytically grown cellular structure of carbon nanotube (CNT). In the small strain regime, where the stress-strain behavior of the material is linear, application of an electric-field along the mechanical loading direction induces an instantaneous increase in the stress and causes an increase in the apparent Young's modulus. The instantaneous increase in the stress shows a cubic-polynomial dependence on the electric-field, which is attributed to the non-linear coupling of the mechanical strain and the electric-field induced polarization of the CNT. The electrostriction induced actuation becomes >100 times larger if the CNT sample is pre-deformed to a small strain. However, in the non-linear stress-strain regime, although a sharp increase in the apparent Young's modulus is observed upon application of an electric-field, no instantaneous increase in the stress occurs. This characteristic suggests that the softening due to the buckling of individual CNT compensates for any instantaneous rise in the electrostriction induced stress at the higher strains. We also present an analytical model to elucidate the experimental observations. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
The mechanical and electrical characteristics of cellular network of the carbon nanotubes (CNT) impregnated with metallic and nonmetallic nanoparticles were examined simultaneously by employing the nanoindentation technique. Experimental results show that the nanoparticle dispersion not only enhances the mechanical strength of the cellular CNT by two orders of magnitude but also imparts variable nonlinear electrical characteristics; the latter depends on the contact resistance between nanoparticles and CNT, which is shown to depend on the applied load while indentation. Impregnation with silver nanoparticles enhances the electrical conductance, the dispersion with copper oxide and zinc oxide nanoparticles reduces the conductance of CNT network. In all cases, a power law behavior with suppression in the differential conductivity at zero bias was noted, indicating electron tunneling through the channels formed at the CNT-nanoparticle interfaces. These results open avenues for designing cellular CNT foams with desired electro-mechanical properties and coupling. (C) 2014 AIP Publishing LLC.
Resumo:
This paper explains the reason behind pull-in time being more than pull-up time of many Radio Frequency Micro-Electro-Mechanical Systems (RF MEMS) switches at actuation voltages comparable to the pull-in voltage. Analytical expressions for pull-in and pull-up time are also presented. Experimental data as well as finite element simulations of electrostatically actuated beams used in RF-MEMS switches show that the pull-in time is generally more than the pull-up time. Pull-in time being more than pull-up time is somewhat counter-intuitive because there is a much larger electrostatic force during pull-in than the restoring mechanical force during the release. We investigated this issue analytically and numerically using a 1D model for various applied voltages and attribute this to energetics, the rate at which the forces change with time, and softening of the overall effective stiffness of the electromechanical system. 3D finite element analysis is also done to support the 1D model-based analyses.
Resumo:
3D thermo-electro-mechanical device simulations are presented of a novel fully CMOS-compatible MOSFET gas sensor operating in a SOI membrane. A comprehensive stress analysis of a Si-SiO2-based multilayer membrane has been performed to ensure a high degree of mechanical reliability at a high operating temperature (e.g. up to 400°C). Moreover, optimisation of the layout dimensions of the SOI membrane, in particular the aspect ratio between the membrane length and membrane thickness, has been carried out to find the best trade-off between minimal device power consumption and acceptable mechanical stress.
Resumo:
High voltage pulsed current produced on board a trawler is fed to electrodes distributed along the foot rope of a trawl net through two core TRS cable which builds up a homogeneous electrical field around the net mouth. By comparative fishing tests with the electrified and non-electrified 32 m long wing trawl net, the increase in total catch of shrimps and fishes was found to be 19.8 and 36%, respectively.
Resumo:
In this paper, we demonstrate a micro-inkjet printing technique as a reproducible post-process for the deposition of carbon nanoparticles and fullerene adlayers onto fully CMOS compatible micro-electro-mechanical silicon-on-insulator infrared (IR) light sources to enhance their infrared emission. We show experimentally a significant increase in the infrared emission efficiency of the coated emitters. We numerically validate these findings with models suggesting a dominant performance increase for wavelengths <5.5 μm. Here, the bimodal size distribution in the diameter of the carbon nanoparticles, relative to the fullerenes, is an effective mediator towards topologically enhanced emittance of our miniaturised emitters. A 90% improvement in IR emission power density has been shown which we have rationalised with an increase in the mean thickness of the deposited carbon nanoparticle adlayer. © 2013 AIP Publishing LLC.
Resumo:
Silicon-on-insulator (SOI) substrate is widely used in micro-electro-mechanical systems (MEMS). With the buried oxide layer of SOI acting as an etching stop, silicon based micro neural probe can be fabricated with improved uniformity and manufacturability. A seven-record-site neural probe was formed by inductive-coupled plasma (ICP) dry etching of an SOI substrate. The thickness of the probe is 15 mu m. The shaft of the probe has dimensions of 3 mmx100 mu mx15 mu m with typical area of the record site of 78.5 mu m(2). The impedance of the record site was measured in-vitro. The typical impedance characteristics of the record sites are around 2 M Omega at 1 kHz. The performance of the neural probe in-vivo was tested on anesthetic rat. The recorded neural spike was typically around 140 mu V. Spike from individual site could exceed 700 mu V. The average signal noise ratio was 7 or more.
Resumo:
Premixed combustion of hydrogen gas and air was performed in a stainless steel based micro-annular combustor for a micro-gas turbine system. Micro-scale combustion has proved to be stable in the micro-combustor with a gap of 2 mm. The operating range of the micro-combustor was measured, and the maximum excess air ratio is up to 4.5. The distribution of the outer wall temperature and the temperature of exhaust gas of the micro-conbustor with excess air ratio were obtained, and the wall temperature of the micro-combustor reaches its maximum value at the excess air ratio of 0.9 instead of 1 (stoichiometric ratio). The heat loss of the micro-combustor to the environment was calculated and even exceeds 70% of the total thermal power computed from the consumed hydrogen mass flow rate. Moreover, radiant hunt transfer covers a large fraction of the total heat loss. Measures used to reduce the heat loss were proposed to improve the thermal performance of the micro-combustor. The optimal operating status of the micro-combustor and micro-gas turbine is analyzed and proposed by analyzing the relationship of the temperature of the exhaust gas of the micro-combustor with thermal power and excess air ratio. The investigation of the thermal performance of the micro-combustor is helpful to design an improved microcombustor.
Resumo:
The micro-beam irradiation system, which focuses the beam down to micron order and precisely delivers a predefined number of ions to a predefined spot of micron order, is a powerful tool for radio-biology, radio-biomedicine and micromachining. The Institute of Modern Physics of Chinese Academy of Sciences is developing a heavy-ion microbeam irradiation system up to intermediate energy. Based on the intermediate and low energy beam provided by Heavy Ion Research Facility of Lanzhou, the micro-beam system takes the form of the magnetic focusing. The heavy-ion beam is conducted to the basement by a symmetrical achromatic system consisting of two vertical bending magnets and a quadrupole in between. Then a beam spot of micron order is formed by a magnetic triplet quadrupole of very high gradient. The sample can be irradiated either in vacuum or in the air. This system will be the first opening platform capable of providing heavy ion micro-beam, ranging from low (10MeV/u) to intermediate energy (100MeV/u), for irradiation experiment with positioning and counting accuracy. Target material may be biology cell, tissue or other non-biological materials. It will be a help for unveiling the essence of heavy-ion interaction with matter and also a new means for exploring the application of heavy-ion irradiation.
Resumo:
Nonclassical states of a mechanical mode at nonzero temperature are achieved in a scheme that combines radiation-pressure coupling to a light field and photon subtraction. The scheme embodies an original and experimentally realistic way to obtain mesoscopic quantumness by putting together two mature technologies for quantum control. The protocol is quasi-insensitive to mechanical damping.