557 resultados para Micellar solubilization
Resumo:
The impetus for the increasing interest in studying surface active ionic liquids (SAILs; ionic liquids with long-chain ""tails"") is the enormous potential for their applications, e.g., in nanotechnology and biomedicine. The progress in these fields rests on understanding the relationship between surfactant structure and solution properties, hence applications. This need has prompted us to extend our previous study on 1-(1-hexadecyl)-3-methylimidazolium chloride to 1-(1-alkyl)-3-methylimidazolium chlorides, with alkyl chains containing 10, 12, and 14 carbons. In addition to investigating relevant micellar properties, we have compared the solution properties of the imidazolium-based surfactants with: 1-(1-alkyl)pyridinium chlorides, and benzyl (2-acylaminoethyl)dimethylammonium chlorides. The former series carries a heterocyclic ring head-group, but does not possess a hydrogen that is as acidic as H2 of the imidazolium ring. The latter series carries an aromatic ring, a quaternary nitrogen and (a hydrogen-bond forming) amide group. The properties of the imidazolium and pyridinium surfactants were determined in the temperature range from 15 to 75 degrees C. The techniques employed were conductivity, isothermal titration calorimetry, and static light scattering. The results showed the important effects of the interactions in the interfacial region on the micellar properties over the temperature range studied. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Ionic liquids, ILs, carrying long-chain alkyl groups are surface active, SAIIs. We investigated the micellar properties of the SAIL 1-hexadecyl-3-methylimidazolium chloride, C(16)MeImCl, and compared the data with 1-hexadecylpyridinium chloride, C(16)PYCl, and benzyl (3-hexadecanoylaminoethyl)dimethylammonium chloride, C(15)AEtBzMe(2)Cl. The properties compared include critical micelle concentration, cmc; thermodynamic parameters of micellization; empirical polarity and water concentrations in the interfacial regions. In the temperature range from 15 to 75 degrees C, the order of cmc in H(2)O and in D(2)O is C(16)PYCl > C(16)MeImCl > C(15)AEtBzMe(2)Cl. The enthalpies of micellization, Delta H(mic)(degrees), were calculated indirectly from by use of the van`t Hoff treatment; directly by isothermal titration calorimetry, ITC. Calculation of the degree of counter-ion dissociation, alpha(mic), from conductivity measurements, by use of Evans equation requires knowledge of the aggregation numbers, N(agg), at different temperatures. We have introduced a reliable method for carrying out this calculation, based on the volume and length of the monomer, and the dependence of N(agg) on temperature. The N(agg) calculated for C(16)PyCl and C(16)MeImCl were corroborated by light scattering measurements. Conductivity- and ITC-based Delta H(mic)(degrees) do not agree; reasons for this discrepancy are discussed. Micelle formation is entropy driven: at all studied temperatures for C(16)MeImCl; only up to 65 degrees C for C(16)PyCl; and up to 55 degrees C for C(15)AEtBzMe(2)Cl. All these data can be rationalized by considering hydrogen-bonding between the head-ions of the monomers in the micellar aggregate. The empirical polarities and concentrations of interfacial water were found to be independent of the nature of the head-group. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A sensitive flow-injection (FI) procedure with spectrophotometric detection in a micellar medium is proposed for the determination of novalgin. The method is based on the instantaneous formation of a red-orange product (lambda(max) = 510 nm) after the reaction between novalgin and p-dimethylaminocinnamaldehyde (p-DAC) in a dilute acid medium. The sensitivity of this reaction was increased by a factor of 5.6 in the presence of sodium dodecyl sulfate (SDS). Experimental design methodologies were used to optimize the chemical and FI variables. The calibration curve was linear in the range of 1.45 x 10(-6) to 2.90 x 10(-5) mol L-1 with an excellent correlation coefficient (r = 0.9999). The detection limit was 1.31 x 10(-7) mol L-1 (n = 20, RSD = 2.0%). No interferences were observed from the common excipients. The results obtained by the proposed method were favorably compared with those given by the iodometric reference method at 95% confidence level.
Resumo:
Alkyl polyethoxylates are surfactants widely used in vastly different fields, from oil exploitation to pharmaceutical applications. One of the most interesting characteristics of these surfactants is their ability to form micellar systems with specific geometry, the so-called wormlike micelle. In this work, microemulsions with three distinct compositions (C/T = 40 %, 30 % and 25 %) was used with contain UNITOL / butanol / water / xylene, cosurfactant / surfactante (C/S) ratio equal to 0,5. The microemulsion was characterized by dynamic light scattering (DLS), capillary viscometry, torque rheometry and surface tensiometry experiments carried out with systems based on xylene, water, butanol (cosurfactant) and nonaethyleneglycolmonododecyl ether (surfactant), with fixed surfactant:cosurfactant:oil composition (with and without oil phase) and varying the overall concentration of the microemulsion. The results showed that a transition from wormlike micelles to nanodrops was characterized by maximum relative viscosity (depending on how relative viscosity was defined), which was connected to maximum effective diameter, determined by DLS. Surface tension suggested that adsorption at the air water interface had a Langmuir character and that the limiting value of the surfactant surface excess was independent of the presence of cosurfactant and xylene. The results of the solubilization of oil sludge and oil recovery with the microemulsion: C/S = 40%, 30% and 25% proved to be quite effective in solubilization of oil sludge, with the percentage of solubilization (%solubilization) as high as 92.37% and enhanced oil recovery rates up to 90.22% for the point with the highest concentration of active material (surfactant), that is, 40%.
Resumo:
We have used isothermal titration calorimetry to investigate the vesicle-to-micelle transition in dioctadecyldimethylammonium bromide (DODAB) and chloride (DODAC) vesicle dispersions induced by the nonionic surfactant octaethylene glycol n-dodecyl monoether (C12E8) at room temperature. Small and giant unilamellar vesicles were prepared by sonication and without sonication, respectively, of the pure cationic surfactants at low concentrations in water. The titration of 1.0 mM DODAX (X = Cl- and Br-) by a concentrated micellar solution of C12E8 shows that the enthalpy of interaction (DeltaH(obs)) of C12E8 in micellar form with DODAX is always endothermic. The titration curves are understood on the basis of superposition of the enthalpies of partitioning of C12E8 into the bilayer, of micelle formation and of vesicle-to-micelle transformation. The enthalpy, DeltaH(obs), initially increases owing to the incorporation of C12E8 into the vesicle bilayer until the C12E8/DODAX saturation ratio (R-sat) is reached, then DeltaH(obs) decreases, in different ways for DODAB and DODAC, owing to degradation of vesicles and formation of mixed micelles and intermediary structures up to the C12E8/DODAX solubilization ratio, R-sol. Above R-sol only mixed micelles exist. The surfactant solubilization takes place in three stages. All the critical ratios are lower for DODAB than for DODAC, meaning that C12E8 solubilizes more strongly in DODAB for example, R-sat is 0.8 for DODAB and 1.2 for DODAC. Sonication has no significant effect on the transition.
Resumo:
The effect of sonication on fluorescence probe solubilization in cationic vesicles of dioctadecyldimethylammonium bromide (DODAB) was investigated by steady-state fluorescence of pyrene (Py), trans-diphenylpolyenes-diphenylbutadiene (DPB), diphenylhexatriene (DPH), and their corresponding 4,4'-dialkyl derivatives 4B4A and 4H4A fluorescence probes. The data indicate that sonication affects the bilayer polarity, the melting temperature (T (m)), and the cooperativity of the melting process due to changes in vesicle morphology. The effect of temperature on the fluorescence intensity and yielding I broken vertical bar(f) and anisotropy < r > shows that the ionizable probes 4B4A and 4H4A are solubilized close to the vesicle interfaces, whereas the non-ionizable DPH and DPB are deeper in the bilayers. Py solubilization indicates that sonicated vesicles exhibit less densely packed bilayers.
Resumo:
Partial pseudoternary phase diagrams were constructed for soy bean oil (SBO)/surfactant/NaCl aqueous solution systems, at 25 degrees C, using the anionic sodium bis(2-ethylhexyl) sulfosuccinate (ACT) and zwiterionic phosphatidylcholine (PC) or mixtures of these surfactants. The isotropic single phase of water-in-oil (W/O) microemulsions (MEs) is shown in the phase diagram and their viscosity reported. ME samples containing small amount of surfactant exhibit slightly higher viscosity than pure SBO, and were used in the solubilization of small water soluble molecules. NaCl enhances the area of the ME phase and MEs with different surfactant composition exhibit different induction time as obtained from tests of oxidative stability, and so are the MEs enriched with ascorbic acid, folic acid and FeSO4, with the latter exhibiting lower stability. The so prepared enriched soy bean oil has potential application in food industry since the surfactants are food grade. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Estudos sobre a ecologia de organismos envolvidos no processo de produção são necessários para o desenvolvimento de uma agricultura sustentável, e hoje, a sustentabilidade está intimamente ligada à rentabilidade de produção. Objetivou-se com este trabalho verificar a ocorrência de fungos micorrízicos arbusculares em plantas daninhas de lavouras brasileiras e avaliar o potencial de solubilização de fosfato inorgânico da microbiota associada. 36 espécies de plantas daninhas foram avaliadas quanto à ocorrência de micorrizas, e 11 foram selecionadas para avaliação do potencial de solubilização total e relativa de fosfato. Todas as espécies apresentaram colonização por micorrizas, inclusive um exemplar da família Brassicaceae, geralmente enquadrada como não micorrizada. Na maioria das espécies, os tipos morfológicos de arbúsculos e enovelados de hifas foram observados, sendo os enovelados mais comuns entre as gramíneas. Fungos endofíticos do tipo dark septate foram visualizados na maioria das plantas. As plantas daninhas apresentaram distintos potenciais de solubilização de P na rizosfera. Amaranthus retroflexus, Bidens pilosa e Leonotis nepetaefolia apresentaram elevados valores de solubilização relativa de fosfato. Este é o primeiro relato de micorrizas e da atividade de solubilização de fosfato em plantas daninhas no Brasil.
Resumo:
The study of the H+ concentration at the micellar interface is a convenient system for modeling the distribution of H+ at interfaces. We have synthesized salicylic acid derivatives to analyze the proton dissociation of both the carboxylic and phenol groups of' the probes, determining spectrophotometrically the apparent pK(a)'s (pK(ap)) in sodium dodecyl Sulfate, SDS, micelles with and without added salt. The synthesized probes were 2-hydroxy-5-(2-trimethylammoniumacetyl)benzoate; 2-hydroxy-5-(2-dimethylhexadecylammoniumacetyl)benzoate- 2-hydroxy-5-(2-dimethylhexadecylammoniumhexanoyl)benzoate-, 2-hydroxy-5-(2-diniethylhexadecylammoniumundecanoyl)betizoate; 2-hydroxy-5-acetylbenzoic acids and 2-hydroxy-5-dodecanoylbenzoic acid. Upon incorporation into SDS micelles the pK(ap)'s of both carboxylic and phenol groups increased by ca. 3 pH units and NaCl addition caused a decrease in the probe-incorporated pKap. The experimental results were fitted with a cell model Poisson-Boltzmann (P-B) equation taking in consideration the effect of salt on the aggregation number of SDS and using the distance of' the dissociating group as a parameter. The conformations of the probes were analyzed theoretically using two dielectric constants, e.g., 2 and 78. Both the P-B analysis and conformation calculations can be interpreted by assuming that the acid groups dissociate very close to, or at, the interface. Our results are consistent with the assumption that the intrinsic pK(a)'s of both carboxylic and phenol groups of the salicylic acid probes used here can be taken as those in water. Using this assumption the micellar and salt effects on the pKap's of the (trialkylammonium)benzoate probes were described accurately using a cell model P-B analysis. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
This work describes a novel approach for the analysis of selected aldehydes (formaldehyde, acetaldehyde, propionaldehyde, and acrolein) and acetone in environmental samples using micellar electrokinetic chromatography (MEKC). The method is based on the reaction of carbonyl compounds with 3-methyl-2-benzothiazoline hydrazone (MBTH) that gives an azine intermediate with maximum absorbance at 216 nm. A systematic evaluation of sample dissolution medium was conducted as a means to enhancing sensitivity. In the best condition, samples were dissolved in 0.030 mol.L-1 tetraborate solution. This condition presented enhancement factors in the range of 35-54 for the aldehydes under investigation, computed as the improvement of the concentration limits of detection (LODs) with reference to the sample dissolved in pure water. The running buffer was 0.020 mol.L-1 tetraborate, pH 9.3, containing 0.050 mol-L-1 sodium dodecyly sulfate (SIDS). The overall methodology presented several advantages over established methods for aldehydes. Worthy mentioning that MBTH is available in high purity degree, dispensing laborious reagent purification procedures. A few method validation parameters were determined revealing good migration time repeatability (< 2.5% coefficient of variation, CV) and area repeatability (< 4% CV), excellent linearity (20-120 mug/L, r > 0.995) and adequate sensitivity for environmental applications. The LODs with respect to each single aldehyde were in the range of 0.54-4.0 mug.L-1 and 11 mug.L-1 for acetone. The methodology was applied to the determination of aldehydes indoors. Samples were collected in an impinger flask containing 0.05% MBTH solution, at a flow rate of 0.80 L.min(-1), during 2.5 h, at different times during the day. The most abundant carbonyls in the samples were acetone, followed by formaldehyde and acetaldehyde, with estimate peak concentrations of 452, 5.2 and 2.2 ppbv, respectively.
Resumo:
Two patterns of solubilization of metal ions resulting from bioleaching of sewage sludge by sulphur-oxidizing Thiobacillus spp. were established as a function of pH. Chromium and copper ions required a pH of 2-3 to initiate their solubilization, whereas nickel and zinc ions had their solubilization initiated at pH 6-6.5. The patterns obtained were independent of the sludge solids concentrations investigated (10, 17, 25, 32.5 and 40 g l(-1)).