936 resultados para Mg Corrosion Mechanisms


Relevância:

30.00% 30.00%

Publicador:

Resumo:

THESIS ABSTRACT Garnets are one of the key metamorphic minerals used to study peak metamorphic conditions or crystallization ages. Equilibrium is typically assumed between the garnet and the matrix. This thesis attempts to understand garnet growth in the Zermatt-Saas Fee (ZSF) eclogites, and discusses consequences for Sm/Nd and Lu/Hf dating and the equilibrium assumption. All studied garnets from the ZSF eclogites are strongly zoned in Mn, Fe, Mg, and Ca. Methods based on chemical zoning patterns and on 3D spatial statistics indicate different growth mechanisms depending on the sample studied. Garnets from the Pfulwe area are grown in a system where surface kinetics likely dominated over intergranular diffusion kinetics. Garnets fram two other localities, Nuarsax and Lago di Cignana, seem to have grown in a system where intergranular diffusion kinetics were dominating over surface kinetics, at least during initial growth. Garnets reveal strong prograde REE+Y zoning. They contain narrow central peaks for Lu + Yb + Tm ± Er and at least one additional small peak towards the rim. The REE Sm + Eu + Gd + Tb ± Dy are depleted in the cores but show one prominent peak close to the rim. It is shown that these patterns cam be explained using a transient matrix diffusion model where REE uptake is limited by diffusion in the matrix surrounding the porphyroblast. The secondary peaks in the garnet profiles are interpreted to reflect thermally activated diffusion due to a temperature increase during prograde metamorphism. The model predicts anomalously low 176Lu/177Hf and 147Sm/144Nd ratios in garnets where growth rates are fast compared to diffusion of the REE, which decreases garnet isochron precisions. The sharp Lu zoning was further used to constrain maximum Lu volume diffusion rates in garnet. The modeled minimum pre-exponential diffusion coefficient which fits the measured central peak is in the order of Do = 5.7* 106 m2/s, taking an activation energy of 270 kJ/mol. The latter was chosen in agreement with experimentally determined values. This can be used to estimate a minimum closure temperature of around 630°C for the ZSF zone. Zoning of REE was combined with published Lu/Hf and Sm/Nd age information to redefine the prograde crystallization interval for Lago di Cignana UHP eclogites. Modeling revealed that a prograde growth interval in the order of 25 m.y. is needed to produce the measured spread in ages. RÉSUMÉ Le grenat est un minéral métamorphique clé pour déterminer les conditions du pic de métamorphisme ainsi que l'âge de cristallisation. L'équilibre entre le grenat et la matrice est requis. Cette étude a pour but de comprendre la croissance du grenat dans les éclogites de la zone de Zermatt-Saas Fee (ZSF) et d'examiner quelques conséquences sur les datations Sm/Nd et Lu/Hf. Tous les grenats des éclogites de ZSF étudiés sont fortement zonés en Mn, Fe, Mg et partiellement en Ca. Les différentes méthodes basées sur le modèle de zonation chimique ainsi que sur les statistiques de répartition spatiale en 3D indiquent un mécanisme de croissance différent en fonction de la localité d'échantillonnage. Les grenats provenant de la zone de Pfulwe ont probablement crû dans un système principalement dominé par la cinétique de surface au détriment de 1a cinétique de diffusion intergranulaire. Les grenats provenant de deux autres localités, Nuarsax et Lago di Cignana, semblent avoir cristallisé dans un système dominé par la diffusion intergranulaire, au moins durant les premiers stades de croissance. Les grenats montrent une forte zonation prograde en Terres Rares (REE) ainsi qu'en Y. Les profils présentent au coeur un pic étroit en Lu + Yb+ Tm ± Er et au moins un petit pic supplémentaire vers le bord. Les coeurs des grenats sont appauvris en Sm + Eu + Gd + Tb ± Dy, mais les bords sont marqués par un pic important de ces REE. Ces profils s'expliquent par un modèle de diffusion matricielle dans lequel l'apport en REE est limité par la diffusion dans la matrice environnant les porphyroblastes. Les pics secondaires en bordure de grain reflètent la diffusion activée par l'augmentation de la température lors du métamorphisme prograde. Ce modèle prédit des rapports 176Lu/177Hf et 147Sm/144Nd anormalement bas lorsque les taux de croissance sont plus rapides que la diffusion des REE, ce qui diminue la précision des isochrones impliquant le grenat. La zonation nette en Lu a permis de contraindre le maximum de diffusion volumique par une approche numérique. Le coefficient de diffusion minimum modélisé en adéquation avec les pics mesurés est de l'ordre de Do = 5.7*10-6 m2/s, en prenant une énergie d'activation ~270 kJ/mol déterminée expérimentalement. Ainsi, la température de clôture minimale est estimée aux alentours de 630°C pour la zone ZSF. Des nouvelles données de zonation de REE sont combinées aux âges obtenus avec les rapports Lu/Hf et Sm/Nd qui redéfissent l'intervalle de cristallisation prograde pour les éclogites UHP de Lago di Cignana. La modélisation permet d'attribuer au minimum un intervalle de croissance prograde de 25 Ma afin d'obtenir les âges préalablement mesurés. RESUME GRAND PUBLIC L'un des principaux buts du pétrologue .métamorphique est d'extraire des roches les informations sur l'évolution temporelle, thermique et barométrique qu'elles ont subi au cours de la formation d'une chaîne de montagne. Le grenat est l'un des minéraux clés dans une grande variété de roches métamorphiques. Il a fait l'objet de nombreuses études dans des terrains d'origines variées ou lors d'études expérimentales afin de comprendre ses domaines de stabilité, ses réactions et sa coexistence avec d'autres minéraux. Cela fait du grenat l'un des minéraux les plus attractifs pour la datation des roches. Cependant, lorsqu'on l'utilise pour la datation et/ou pour la géothermobarométrie, on suppose toujours que le grenat croît en équilibre avec les phases coexistantes de la matrice. Pourtant, la croissance d'un minéral est en général liée au processus de déséquilibre. Cette étude a pour but de comprendre comment croît le grenat dans les éclogites de Zermatt - Saas Fee et donc d'évaluer le degré de déséquilibre. Il s'agit aussi d'expliquer les différences d'âges obtenues grâce aux grenats dans les différentes localités de l'unité de Zermatt-Saas Fee. La principale question posée lors de l'étude des mécanismes de croissance du grenat est: Parmi les processus en jeu lors de la croissance du grenat (dissolution des anciens minéraux, transport des éléments vers le nouveau grenat, précipitation d'une nouvelle couche en surface du minéral), lequel est le plus lent et ainsi détermine le degré de déséquilibre? En effet, les grenats d'une des localités (Pfulwe) indiquent que le phénomène d'adhérence en surface est le plus lent, contrairement aux grenats des autres localités (Lago di Cignana, Nuarsax) dans lesquels ce sont les processus de transport qui sont les plus lents. Cela montre que les processus dominants sont variables, même dans des roches similaires de la même unité tectonique. Ceci implique que les processus doivent être déterminés individuellement pour chaque roche afin d'évaluer le degré de déséquilibre du grenat dans la roche. Tous les grenats analysés présentent au coeur une forte concentration de Terres Rares: Lu + Yb + Tm ± Er qui décroît vers le bord du grain. Inversement, les Terres Rares Sm + Eu + Gd + Tb ± Dy sont appauvries au coeur et se concentrent en bordure du grain. La modélisation révèle que ces profils sont-dus à des cinétiques lentes de transport des Terres Rares. De plus, les modèles prédisent des concentrations basses en éléments radiogéniques pères dans certaines roches, ce qui influence fortement sur la précision des âges obtenus par la méthode d'isochrone. Ceci signifie que les roches les plus adaptées pour les datations ne doivent contenir ni beaucoup de grenat ni de très gros cristaux, car dans ce cas, la compétition des éléments entre les cristaux limite à de faibles concentrations la quantité d'éléments pères dans chaque cristal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rosin is a natural product from pine forests and it is used as a raw material in resinate syntheses. Resinates are polyvalent metal salts of rosin acids and especially Ca- and Ca/Mg- resinates find wide application in the printing ink industry. In this thesis, analytical methods were applied to increase general knowledge of resinate chemistry and the reaction kinetics was studied in order to model the non linear solution viscosity increase during resinate syntheses by the fusion method. Solution viscosity in toluene is an important quality factor for resinates to be used in printing inks. The concept of critical resinate concentration, c crit, was introduced to define an abrupt change in viscosity dependence on resinate concentration in the solution. The concept was then used to explain the non-inear solution viscosity increase during resinate syntheses. A semi empirical model with two estimated parameters was derived for the viscosity increase on the basis of apparent reaction kinetics. The model was used to control the viscosity and to predict the total reaction time of the resinate process. The kinetic data from the complex reaction media was obtained by acid value titration and by FTIR spectroscopic analyses using a conventional calibration method to measure the resinate concentration and the concentration of free rosin acids. A multivariate calibration method was successfully applied to make partial least square (PLS) models for monitoring acid value and solution viscosity in both mid-infrared (MIR) and near infrared (NIR) regions during the syntheses. The calibration models can be used for on line resinate process monitoring. In kinetic studies, two main reaction steps were observed during the syntheses. First a fast irreversible resination reaction occurs at 235 °C and then a slow thermal decarboxylation of rosin acids starts to take place at 265 °C. Rosin oil is formed during the decarboxylation reaction step causing significant mass loss as the rosin oil evaporates from the system while the viscosity increases to the target level. The mass balance of the syntheses was determined based on the resinate concentration increase during the decarboxylation reaction step. A mechanistic study of the decarboxylation reaction was based on the observation that resinate molecules are partly solvated by rosin acids during the syntheses. Different decarboxylation mechanisms were proposed for the free and solvating rosin acids. The deduced kinetic model supported the analytical data of the syntheses in a wide resinate concentration region, over a wide range of viscosity values and at different reaction temperatures. In addition, the application of the kinetic model to the modified resinate syntheses gave a good fit. A novel synthesis method with the addition of decarboxylated rosin (i.e. rosin oil) to the reaction mixture was introduced. The conversion of rosin acid to resinate was increased to the level necessary to obtain the target viscosity for the product at 235 °C. Due to a lower reaction temperature than in traditional fusion synthesis at 265 °C, thermal decarboxylation is avoided. As a consequence, the mass yield of the resinate syntheses can be increased from ca. 70% to almost 100% by recycling the added rosin oil.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Salmonella enterica – Fluorokinoloni- ja makrolidiresistenssimekanisimit Vakavia salmonellainfektioita on pitkään hoidettu fluorokinoloniantibiooteilla, kuten siprofloksasiinilla. Fluorokinolonien runsas käyttö niin ihmisillä kuin eläimilläkin on kuitenkin johtanut fluorokinoloniresistenttien salmonellakantojen lisääntymiseen. Vuoteen 2002 asti kaikki matalan tason fluorokinoloniresistenssiä ilmentävät salmonellakannat olivat resistenttejä nalidiksiinihapolle, joka on vanha ensimmäisen polven kinoloniantibiootti jota ei enää käytetä infektioiden hoidossa. Vuonna 2003 havaitsimme aivan uudentyyppisen resistenssifenotyypin salmonelloissa. Kaikki uuden fenotyypin kannat osoittivat matalaa fluorokinoloniresistenssiä (MIC ≥0.125 mg/L), mutta useat kannat olivat yllättäen aikaisempaa herkempiä nalidiksiinihapolle (MIC ≤32 mg/L). Ilmiöllä on suuri merkitys salmonellan antibioottiherkkyyksien määrittämisessä, sillä jos kanta on ollut nalidiksiinihapolle herkkä, sitä on pidetty herkkänä myös fluorokinoloneille. Väitöskirjatyössä määritettiin vuosina 2003–2007 Suomessa kerättyjen kotimaisten ja ulkomaalaisten S. enterica -kantojen fluorokinoloniresistenssiä sekä tutkittiin uuden salmonellafenotyypin epidemiologiaa ja resistenssimekanismeja. Lisäksi tutkittiin salmonellan hoidossa mahdollisesti käyttökelpoisen makrolidiantibioottijohdannaisen, atsitromysiinin tehoa salmonelloihin ja erityisesti matalaa fluorokinoloniresistenssiä ilmentäviin kantoihin. Tutkimuksessa havaittiin, että matalaa fluorokinoloniresistenssiä osoittavien salmonellakantojen määrä vähenee. Lasku oli voimakkainta Kaakkois-Aasiasta tuoduissa kannoissa. Uusi resistenssifenotyyppi on plasmidivälitteinen ja qnr-geenit olivat ainoa plasmidivälitteinen kinoloniresistenssimekanismi, joka kannoista löydettiin. Myöskään kromosomaalisten gyrA, gyrB ja parE -geenien QRDR-alueelta ei löydetty fluorokinoloniresistenssiä aiheuttavia mutaatioita. Transformaatiolla osoitettiin qnr-plasmidien olevan siirtyviä ja uusi resistenssifenotyyppi saatiin ilmennettyä myös herkässä vastaanottajakannassa. Nämä tulokset osoittavat, että vaikka S. enterican qnr-fenotyyppi on toistaiseksi levinnyt pääasiassa Kaakkois-Aasiaan, se siirtyy helposti bakteerista toiseen ja tulee todennäköisesti aiheuttamaan hoito-ongelmia myös muualla maailmassa. Uudentyyppinen qnr-fenotyyppi voi olla vaikea havaita perinteisellä herkkyysmäärityksellä. Siksi laboratorioissa tulisi aina määrittää sekä siprofloksasiiniettä nalidiksiinihappoherkkyydet. Atsitromysiinin osoitettiin olevan herkkyysmääritysten mukaan tehokas salmonelloja kohtaan mukaanlukien matala-asteista fluorokinoloniresistenssiä ilmentävät bakteerikannat.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The overall purpose of this thesis was to increase the knowledge on the biogeochemistry of rural acid sulphate (AS) soil environments and urban forest ecosystems near small towns in Western Finland. In addition, the potential causal relationship between the distribution of AS soils and geographical occurence of multiple sclerosis (MS) disease was assessed based on a review of existing literature and data. Acid sulphate soils, which occupy an area of approximately 17–24 million hectare worldwide, are regarded as the nastiest soils in the world. Independent of the geographical locality of these soils, they pose a great threat to their surrounding environment if disturbed. The abundant metal-rich acid drainage from Finnish AS soils, which is a result of sulphide oxidation due to artificial farmland drainage, has significant but spatially and temporally variable ecotoxicological impacts on biodiversity and community structure of fish, benthic invertebrates and macrophytes. This has resulted in mass fish kills and even eradication of sensitive fish species in affected waters. Moreover, previous investigations demonstrated significantly enriched concentrations of Co, Ni, Mn and Al, metals which are abundantly mobilised in AS soils, in agricultural crops (timothy grass and oats) and approximately 50 times higher concentrations of Al in cow milk originating from AS soils in Western Finland. Nevertheless, the results presented here demonstrate, in general, relatively moderate metal concentrations in oats and cabbage grown on AS soils in Western Finland, although some of the studied fields showed anomalous values of metals (e.g. Co and Ni) in both the soil and target plants (especially oats), similar to that of the previous investigations. The results indicated that the concentrations of Co, Ni, Mn and Zn in oats and Co and Zn in cabbage were governed by soil geochemistry as these metals were correlated with corresponding concentrations extracted from the soil by NH4Ac-EDTA and NH4Ac, respectively. The concentrations of Cu and Fe in oats and cabbage were uncorrelated to that of the easily soluble concentrations in the soils, suggesting that biological processes (e.g. plant-root processes) overshadow geochemical variation. The concentrations of K and Mg in cabbage, which showed a low spread and were strongly correlated to the NH4Ac extractable contents in the soil, were governed by both the bioavailable fractions in the topsoil and plant-uptake mechanisms. The plant´s ability to regulate its uptake of Ca and P (e.g. through root exudates) seemed to be more important than the influence of soil geochemistry. The distribution of P, K, Ca, Mg, Mn and S within humus, moss and needles in and around small towns was to a high degree controlled by biological cycling, which was indicated by the low correlation coefficients for P, K, Ca, Mg and S between humus and moss, and the low spread of these nutrients in moss and needles. The concentration variations of elements in till are mainly due to natural processes (e.g. intrusions, weathering, mineralogical variations in the bedrock). There was a strong spatial pattern for B in humus, moss and needles, which was suggested to be associated with anthropogenic emissions from nearby town centres. Geogenic dust affected the spatial distribution of Fe and Cr in moss, while natural processes governed the Fe anomaly found in the needles. The spatial accumulation patterns of Zn, Cd, Cu, Ni and Pb in humus and moss were strong and diverse, and related to current industry, the former steel industry, coal combustion, and natural geochemical processes. An intriguing Cu anomaly was found in moss. Since it was located close to a main railway line and because the railway line´s electric cables are made of Cu, it was suggested that the reason for the Cu anomaly is corrosion of these cables. In Western Finland, where AS soils are particularly abundant and enrich the metal concentrations of stream waters, cow milk and to some extent crops, an environmental risk assessment would be motivated to elucidate if the metal dispersion affect human health. Within this context, a topic of concern is the distribution of multiple sclerosis as high MS prevalence rates are found in the main area of AS soils. Regionally, the AS soil type in the Seinäjoki area has been demonstrated to be very severe in terms of metal leaching, this area also shows one of the highest MS rates reported worldwide. On a local scale, these severe AS soil types coincide well with the corresponding MS clustering along the Kyrönjoki River in Seinäjoki. There are reasons to suspect that these spatial correlations are causal, as multiple sclerosis has been suggested to result from a combination of genetic and environmental factors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inhibition of global warming has become one of the major goals for the coming decades. A key strategy is to replace fossil fuels with more sustainable fuels, which has generated growing interest in the use of waste-derived fuels and of biomass fuels. However, from the chemical point of view, biomass is an inhomogeneous fuel, usually with a high concentration of water and considerable amounts of potassium and chlorine, all of which are known to affect the durability of superheater tubes. To slow down or reduce corrosion, power plants using biomass as fuel have been forced to operate at lower steam temperatures as compared to fossil fuel power plants. This reduces power production efficiency: every 10°C rise in the steam temperature results in an approximate increase of 2% in power production efficiency. More efficient ways to prevent corrosion are needed so that power plants using biomass and waste-derived fuels can operate at higher steam temperatures. The aim of this work was to shed more light on the alkali-induced corrosion of superheater steels at elevated temperatures, focusing on potassium chloride, the alkali salt most frequently encountered in biomass combustion, and on potassium carbonate, another potassium salt occasionally found in fly ash. The mechanisms of the reactions between various corrosive compounds and steels were investigated. Based on the results, the potassium-induced accelerated oxidation of chromia protected steels appears to occur in two consecutive stages. In the first, the protective chromium oxide layer is destroyed through a reaction with potassium leading to the formation of intermediates such as potassium chromate (K2CrO4) and depleting the chromium in the protective oxide layer. As the chromium is depleted, chromium from the bulk steel diffuses into the oxide layer to replenish it. In this stage, the ability of the material to withstand corrosion depends on the chromium content (which affects how long it takes the chromium in the oxide layer to be depleted) and on external factors such as temperature (which affects how fast the chromium diffuses into the protective oxide from the bulk steel). For accelerated oxidation to continue, the presence of chloride appears to be essential.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have previously demonstrated that blood volume (BV) expansion decreases saline flow through the gastroduodenal (GD) segment in anesthetized rats (Xavier-Neto J, dos Santos AA & Rola FH (1990) Gut, 31: 1006-1010). The present study attempts to identify the site(s) of resistance and neural mechanisms involved in this phenomenon. Male Wistar rats (N = 97, 200-300 g) were surgically manipulated to create four gut circuits: GD, gastric, pyloric and duodenal. These circuits were perfused under barostatically controlled pressure (4 cmH2O). Steady-state changes in flow were taken to reflect modifications in circuit resistances during three periods of time: normovolemic control (20 min), expansion (10-15 min), and expanded (30 min). Perfusion flow rates did not change in normovolemic control animals over a period of 60 min. BV expansion (Ringer bicarbonate, 1 ml/min up to 5% body weight) significantly (P<0.05) reduced perfusion flow in the GD (10.3 ± 0.5 to 7.6 ± 0.6 ml/min), pyloric (9.0 ± 0.6 to 5.6 ± 1.2 ml/min) and duodenal (10.8 ± 0.4 to 9.0 ± 0.6 ml/min) circuits, but not in the gastric circuit (11.9 ± 0.4 to 10.4 ± 0.6 ml/min). Prazosin (1 mg/kg) and yohimbine (3 mg/kg) prevented the expansion effect on the duodenal but not on the pyloric circuit. Bilateral cervical vagotomy prevented the expansion effect on the pylorus during the expansion but not during the expanded period and had no effect on the duodenum. Atropine (0.5 mg/kg), hexamethonium (10 mg/kg) and propranolol (2 mg/kg) were ineffective on both circuits. These results indicate that 1) BV expansion increases the GD resistance to liquid flow, 2) pylorus and duodenum are important sites of resistance, and 3) yohimbine and prazosin prevented the increase in duodenal resistance and vagotomy prevented it partially in the pylorus

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Photodynamic therapy (PDT) mediated by oxidative stress causes direct tumor cell damage as well as microvascular injury. To improve this treatment new photosensitizers are being synthesized and tested. We evaluated the effects of PDT with 5,10,15,20-tetrakis(4-methoxyphenyl)-porphyrin (TMPP) and its zinc complex (ZnTMPP) on tumor levels of malondialdehyde (MDA), reduced glutathione (GSH) and cytokines, and on the activity of caspase-3 and metalloproteases (MMP-2 and -9) and attempted to correlate them with the histological alterations of tumors in 3-month-old male Wistar rats, 180 ± 20 g, bearing Walker 256 carcinosarcoma. Rats were randomly divided into five groups: group 1, ZnTMPP+irradiation (IR) 10 mg/kg body weight; group 2, TMPP+IR 10 mg/kg body weight; group 3, 5-aminolevulinic acid (5-ALA+IR) 250 mg/kg body weight; group 4, control, no treatment; group 5, only IR. The tumors were irradiated for 15 min with red light (100 J/cm², 10 kHz, 685 nm) 24 h after drug administration. Tumor tissue levels of MDA (1.1 ± 0.7 in ZnTMPP vs 0.1 ± 0.04 nmol/mg protein in control) and TNF-α (43.5 ± 31.2 in ZnTMPP vs 17.3 ± 1.2 pg/mg protein in control) were significantly higher in treated tumors than in controls. Higher caspase-3 activity (1.9 ± 0.9 in TMPP vs 1.1 ± 0.6 OD/mg protein in control) as well as the activation of MMP-2 (P < 0.05) were also observed in tumors. These parameters were correlated (Spearman correlation, P < 0.05) with the histological alterations. These results suggest that PDT activates the innate immune system and that the effects of PDT with TMPP and ZnTMPP are mediated by reactive oxygen species, which induce cell membrane damage and apoptosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Our previous study has shown that reduced insulin resistance (IR) was one of the possible mechanisms for the therapeutic effect of silibinin on non-alcoholic fatty liver disease (NAFLD) in rats. In the present study, we investigated the pathways of silibinin in regulating hepatic glucose production and IR amelioration. Forty-five 4- to 6-week-old male Sprague Dawley rats were divided into a control group, an HFD group (high-fat diet for 6 weeks) and an HFD + silibinin group (high-fat diet + 0.5 mg kg-1·day-1 silibinin, starting at the beginning of the protocol). Both subcutaneous and visceral fat was measured. Homeostasis model assessment-IR index (HOMA-IR), intraperitoneal glucose tolerance test and insulin tolerance test (ITT) were performed. The expression of adipose triglyceride lipase (ATGL) and of genes associated with hepatic gluconeogenesis was evaluated. Silibinin intervention significantly protected liver function, down-regulated serum fat, and improved IR, as shown by decreased HOMA-IR and increased ITT slope. Silibinin markedly prevented visceral obesity by reducing visceral fat, enhanced lipolysis by up-regulating ATGL expression and inhibited gluconeogenesis by down-regulating associated genes such as Forkhead box O1, phosphoenolpyruvate carboxykinase and glucose-6-phosphatase. Silibinin was effective in ameliorating IR in NAFLD rats. Reduction of visceral obesity, enhancement of lipolysis and inhibition of gluconeogenesis might be the underlying mechanisms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

All the exciting work on developing new and better alloys has led older alloys, such as AZ9l , being abandoned by researchers. lt is believed that the full potential of AZ9l in automotive design has not been realized. Whatever works have been carried out on AZ9lalloy to improve its mechanical properties are insufficient in terms of its potential usage in auto industries. Due to the fact that AZ91 offers high room temperature mechanical properties and good castability, still this alloy is a primary choice for the auto component manufactures. Small improvement in its creep properties will have a huge impact in the transportation industries. Hence, in the present work, “Influence of Si, Sb and Sr Additions on the Microstructure, Mechanical Properties and Corrosion Behavior of AZ91 Magnesium Alloy”, an attempt has been made to improve the creep properties of AZ9l alloy through minor alloying elemental additions and to understand its strengthening mechanisms. The effect of alloying additions on the ageing and tensile properties of AZ9l is also studied. In addition to that, role of various intermetallics formed due to the alloying additions on the corrosion properties of AZ9l alloy is investigated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Demand on magnesium and its alloys is increased significantly in the automotive industry because of their great potential in reducing the weight of components, thus resulting in improvement in fuel efficiency of the vehicle. To date, most of Mg products have been fabricated by casting, especially, by die-casting because of its high productivity, suitable strength, acceptable quality & dimensional accuracy and the components produced through sand, gravity and low pressure die casting are small extent. In fact, higher solidification rate is possible only in high pressure die casting, which results in finer grain size. However, achieving high cooling rate in gravity casting using sand and permanent moulds is a difficult task, which ends with a coarser grain nature and exhibit poor mechanical properties, which is an important aspect of the performance in industrial applications. Grain refinement is technologically attractive because it generally does not adversely affect ductility and toughness, contrary to most other strengthening methods. Therefore formation of fine grain structure in these castings is crucial, in order to improve the mechanical properties of these cast components. Therefore, the present investigation is “GRAIN REFINEMENT STUDIES ON Mg AND Mg-Al BASED ALLOYS”. The primary objective of this present investigation is to study the effect of various grain refining inoculants (Al-4B, Al- 5TiB2 master alloys, Al4C3, Charcoal particles) on Pure Mg and Mg-Al alloys such as AZ31, AZ91 and study their grain refining mechanisms. The second objective of this work is to study the effect of superheating process on the grain size of AZ31, AZ91 Mg alloys with and without inoculants addition. In addition, to study the effect of grain refinement on the mechanical properties of Mg and Mg-Al alloys. The thesis is well organized with seven chapters and the details of the studies are given below in detail.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aspartame has been previously shown to increase satiety. This study aimed to investigate a possible role for the satiety hormones cholecystokinin (CCK) and glucagon-like peptide-1 (GLP-1) in this effect. The effects of the constituents of aspartame, phenylalanine and aspartic acid, were also examined. Six subjects consumed an encapsulated preload consisting of either 400 mg aspartame, 176 mg aspartic acid + 224 mg phenylalanine, or 400 mg corn flour (control), with 1.5 g paracetamol dissolved in 450 ml water to measure gastric emptying. A 1983-kJ liquid meal was consumed 60 min later. Plasma CCK, GLP-1, glucose-dependent insulinotropic polypeptide (GIP), glucose, and insulin were measured over 0-120 min. Gastric emptying was measured from 0 to 60 min. Plasma GLP-1 concentrations decreased following the liquid meal (60-120 min) after both the aspartame and amino acids preloads (control, 2096.9 pmol/l min; aspartame, 536.6 pmol/l min; amino acids, 861.8 pmol/l min; incremental area under the curve [AUC] 60-120 min, P<.05). Desire to cat was reduced from 60 to 120 min following the amino acids preload (control, -337.1 mm min; aspartame, -505.4 mm min; amino acids, -1497.1 mm min; incremental AUC 60-120 min, P<.05). However, gastric emptying rates, plasma CCK, GIP, insulin, and glucose concentrations were unaffected. There was a correlation between the increase in plasma phenylalanine and decrease in desire to eat after the liquid meal following the constituent amino acids (r = -.9774, P=.004). In conclusion, it is unlikely that aspartame increases satiety via CCK- or GLP-1-mediated mechanisms, but small changes in circulating phenylalanine concentrations may influence appetite. (C) 2003 Elsevier Science Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

16S rRNA gene sequencing was used to identify a sulfate-reducing bacterium (SRB) from a Danish North Sea oilfield water injection system. This species was cultivated, purified and subsequently identified as being >97% similar to Desulfovibrio gracilis. Like some other Desulfovibrio species this SRB, strain OP102, could reduce nitrate as an electron acceptor and produce ammonia in the absence of sulfate. In addition, in the presence of sulfate, when nitrate was dosed at 100 mg/l it was again reduced by the bacterium, with some ammonium production. Therefore, this mechanism could be important in oilfield systems where nitrate is applied to prevent sulfide generation by SRB which leads to reservoir souring. In static tests the influence of this Desulfovibrio on corrosion was assessed using carbon steel coupons, in the presence of sulfate and in the presence of sulfate with 100 mg/l nitrate. Corrosion rates were less than 1.5 mpy when coupons were incubated in the same water, with sulfate and with nitrate. Furthermore, the occurrence of pitting corrosion was fairly low under all circumstances.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microencapsulation of drugs into preformed polymers is commonly achieved through solvent evaporation techniques or spray drying. We compared these encapsulation methods in terms of controlled drug release properties of the prepared microparticles and investigated the underlying mechanisms responsible for the “burst release” effect. Using two different pH-responsive polymers with a dissolution threshold of pH 6 (Eudragit L100 and AQOAT AS-MG), hydrocortisone, a model hydrophobic drug, was incorporated into microparticles below and above its solubility within the polymer matrix. Although, spray drying is an attractive approach due to rapid particle production and relatively low solvent waste, the oil-in-oil microencapsulation method is superior in terms of controlled drug release properties from the microparticles. Slow solvent evaporation during the oil-in-oil emulsification process allows adequate time for drug and polymer redistribution in the microparticles and reduces uncontrolled drug burst release. Electron microscopy showed that this slower manufacturing procedure generated non-porous particles whereas thermal analysis and X-ray diffractometry showed that drug loading above the solubility limit of the drug in the polymer generated excess crystalline drug on the surface of the particles. Raman spectral mapping illustrated that drug was homogeneously distributed as a solid solution in the particles when loaded below saturation in the polymer with consequently minimal burst release.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background and Aims Leafy vegetable Brassica crops are an important source of dietary calcium (Ca) and magnesium (Mg) and represent potential targets for increasing leaf Ca and Mg concentrations through agronomy or breeding. Although the internal distribution of Ca and Mg within leaves affects the accumulation of these elements, such data are not available for Brassica. The aim of this study was to characterize the internal distribution of Ca and Mg in the leaves of a vegetable Brassica and to determine the effects of altered exogenous Ca and Mg supply on this distribution. Methods Brassica rapa ssp. trilocularis ‘R-o-18’ was grown at four different Ca:Mg treatments for 21 d in a controlled environment. Concentrations of Ca and Mg were determined in fully expanded leaves using inductively coupled plasma-mass spectrometry (ICP-MS). Internal distributions of Ca and Mg were determined in transverse leaf sections at the base and apex of leaves using energy-dispersive X-ray spectroscopy (EDS) with cryo-scanning electron microscopy (cryo-SEM). Key Results Leaf Ca and Mg concentrations were greatest in palisade and spongy mesophyll cells, respectively, although this was dependent on exogenous supply. Calcium accumulation in palisade mesophyll cells was enhanced slightly under high Mg supply; in contrast, Mg accumulation in spongy mesophyll cells was not affected by Ca supply. Conclusions The results are consistent with Arabidopsis thaliana and other Brassicaceae, providing phenotypic evidence that conserved mechanisms regulate leaf Ca and Mg distribution at a cellular scale. The future study of Arabidopsis gene orthologues in mutants of this reference B. rapa genotype will improve our understanding of Ca and Mg homeostasis in plants and may provide a model-to-crop translation pathway for targeted breeding.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pilocarpine (cholinergic muscarinic agonist) injected peripherally may act centrally to produce pressor responses; in the present study, using c-fos immunoreactive expression, we investigated the forebrain and brainstem areas activated by pressor doses of intravenous (i.v.) pilocarpine. In addition, the importance of vasopressin secretion and/or sympathetic activation and the effects of lesions in the anteroventral third ventricle (AV3V) region in awake rats were also investigated. In male Holtzman rats, pilocarpine (0.04 to 4 mu mol/kg b.w.) i.v. induced transitory hypotension followed by long lasting hypertension. Sympathetic blockade with prazosin (1 mg/kg b.w.) i.v. or AV3V lesions (1 day) almost abolished the pressor response to i. v. pilocarpine (2 mu mol/kg b.w.), whereas the vasopressin antagonist (10 mu g/kg b.w.) i.v. reduced the response to pilocarpine. Pilocarpine (2 and 4 mu mol/kg b.w.) i.v. increased the number of c-fos immunoreactive cells in the subfornical organ, paraventricular and supraoptic nuclei of the hypothalamus, organ vasculosum of the lamina terminalis, median preoptic nucleus, nucleus of the solitary tract and caudal and rostral ventrolateral medulla. These data suggest that i.v. pilocarpine activates specific forebrain and brainstem mechanisms increasing sympathetic activity and vasopressin secretion to induce pressor response. (C) 2011 Elsevier B.V. All rights reserved.