885 resultados para Metric Antiprojection
Resumo:
3rd International Conference on Mathematical Modeling in Physical Sciences (IC-MSQUARE) Madrid, AUG 28-31, 2014 / editado por Vagenas, EC; Vlachos, DS; Bastos, C; Hofer, T; Kominis, Y; Kosmas, O; LeLay, G; DePadova, P; Rode, B; Suraud, E; Varga, K
Resumo:
This paper investigates some properties of cyclic fuzzy maps in metric spaces. The convergence of distances as well as that of sequences being generated as iterates defined by a class of contractive cyclic fuzzy mapping to fuzzy best proximity points of (non-necessarily intersecting adjacent subsets) of the cyclic disposal is studied. An extension is given for the case when the images of the points of a class of contractive cyclic fuzzy mappings restricted to a particular subset of the cyclic disposal are allowed to lie either in the same subset or in its next adjacent one.
Resumo:
In this paper, inspired by two very different, successful metric theories such us the real view-point of Lowen's approach spaces and the probabilistic field of Kramosil and Michalek's fuzzymetric spaces, we present a family of spaces, called fuzzy approach spaces, that are appropriate to handle, at the same time, both measure conceptions. To do that, we study the underlying metric interrelationships between the above mentioned theories, obtaining six postulates that allow us to consider such kind of spaces in a unique category. As a result, the natural way in which metric spaces can be embedded in both classes leads to a commutative categorical scheme. Each postulate is interpreted in the context of the study of the evolution of fuzzy systems. First properties of fuzzy approach spaces are introduced, including a topology. Finally, we describe a fixed point theorem in the setting of fuzzy approach spaces that can be particularized to the previous existing measure spaces.
Resumo:
This paper suggests a method for identification in the v-gap metric. For a finite number of frequency response samples, a problem for identification in the v-gap metric is formulated and an approximate solution is described. It uses an iterative technique for obtaining an L2-gap approximation. Each stage of the iteration involves solving an LMI optimisation. Given a known stabilising controller and the L2-gap approximation, it is shown how to derive a v-gap approximation.