958 resultados para Methanol electrooxidation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Química e Bioquímica

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Biotecnologia

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the projection of an increasing world population, hand-in-hand with a journey towards a bigger number of developed countries, further demand on basic chemical building blocks, as ethylene and propylene, has to be properly addressed in the next decades. The methanol-to-olefins (MTO) is an interesting reaction to produce those alkenes using coal, gas or alternative sources, like biomass, through syngas as a source for the production of methanol. This technology has been widely applied since 1985 and most of the processes are making use of zeolites as catalysts, particularly ZSM-5. Although its selectivity is not especially biased over light olefins, it resists to a quick deactivation by coke deposition, making it quite attractive when it comes to industrial environments; nevertheless, this is a highly exothermic reaction, which is hard to control and to anticipate problems, such as temperature runaways or hot-spots, inside the catalytic bed. The main focus of this project is to study those temperature effects, by addressing both experimental, where the catalytic performance and the temperature profiles are studied, and modelling fronts, which consists in a five step strategy to predict the weight fractions and activity. The mind-set of catalytic testing is present in all the developed assays. It was verified that the selectivity towards light olefins increases with temperature, although this also leads to a much faster catalyst deactivation. To oppose this effect, experiments were carried using a diluted bed, having been able to increase the catalyst lifetime between 32% and 47%. Additionally, experiments with three thermocouples placed inside the catalytic bed were performed, analysing the deactivation wave and the peaks of temperature throughout the bed. Regeneration was done between consecutive runs and it was concluded that this action can be a powerful means to increase the catalyst lifetime, maintaining a constant selectivity towards light olefins, by losing acid strength in a steam stabilised zeolitic structure. On the other hand, developments on the other approach lead to the construction of a raw basic model, able to predict weight fractions, that should be tuned to be a tool for deactivation and temperature profiles prediction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

IntroductionThe larvicidal activity of Solanum lycocarpumagainst Culex quinquefasciatus is unknown.MethodsWe evaluated the larvicidal activity of extracts of the green fruits of Solanum lycocarpum against third and fourth instar larvae of C. quinquefasciatus.ResultsDichloromethane and ethyl acetate fractions showed the greatest larvicidal effect at 200mg/L (83.3% and 86.7%, respectively). The methanol and dichloromethane, ethyl acetate, and hydromethanolic fractions demonstrated larvicidal effects against C. quinquefasciatus, with LC50 values of 126.24, 75.13, 83.15, and 207.05mg/L, respectively.ConclusionsThus, when considering new drugs with larvicidal activity from natural products, S. lycocarpum fruits may be good candidate sources.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple procedure for the simultaneous detection of cyclopiazonic acid (CPA) and aflatoxin B1 from fungal extracts is presented, using a methanol and water mobile phase and fluorescence detection. This methodology has been tested with standard solutions of both mycotoxins CPA and Aflatoxin B1 and with methanolic extracts of Aspergillus section Flavi strains, previously characterized for their mycotoxin production profile. Previously available methodology required the use of two different chromatographic runs for these mycotoxins, with distinct columns and detectors (fluorescence detection with a post-column photochemical derivatization (PHRED) for aflatoxin B1 and UV detection for CPA). The proposed method detects both mycotoxins in a single run. Data from these assays will be presented and discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Direct methanol fuel cell, DMFC, model, mass transport, Maxwell-Stefan, Flory-Huggins, crossover, polymer electrolyte membrane, Nafion

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DMFC, dynamic behaviour, current steps, system analysis, methanol oxidation, flow field design

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new electrochemical method to synthesize mesoporous nanowires of alloys has been developed. Electrochemical deposition in ionic liquid-in-water (IL/W) microemulsion has been successful to grow mesoporous CoPt nanowires in the interior of polycarbonate membranes. The viscosity of the medium was high, but it did not avoid the entrance of the microemulsion in the interior of the membrane"s channels. The structure of the IL/W microemulsions, with droplets of ionic liquid (4 nm average diameter) dispersed in CoPt aqueous solution, defined the structure of the nanowires, with pores of a few nanometers, because CoPt alloy deposited only from the aqueous component of the microemulsion. The electrodeposition in IL/W microemulsion allows obtaining mesoporous structures in which the small pores must correspond to the size of the droplets of the electrolytic aqueous component of the microemulsion. The IL main phase is like a template for the confined electrodeposition. The comparison of the electrocatalytic behaviours towards methanol oxidation of mesoporous and compact CoPt nanowires of the same composition, demonstrated the porosity of the material. For the same material mass, the CoPt mesoporous nanowires present a surface area 16 times greater than compact ones, and comparable to that observed for commercial carbon-supported platinum nanoparticles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new electrochemical method to synthesize mesoporous nanowires of alloys has been developed. Electrochemical deposition in ionic liquid-in-water (IL/W) microemulsion has been successful to grow mesoporous CoPt nanowires in the interior of polycarbonate membranes. The viscosity of the medium was high, but it did not avoid the entrance of the microemulsion in the interior of the membrane"s channels. The structure of the IL/W microemulsions, with droplets of ionic liquid (4 nm average diameter) dispersed in CoPt aqueous solution, defined the structure of the nanowires, with pores of a few nanometers, because CoPt alloy deposited only from the aqueous component of the microemulsion. The electrodeposition in IL/W microemulsion allows obtaining mesoporous structures in which the small pores must correspond to the size of the droplets of the electrolytic aqueous component of the microemulsion. The IL main phase is like a template for the confined electrodeposition. The comparison of the electrocatalytic behaviours towards methanol oxidation of mesoporous and compact CoPt nanowires of the same composition, demonstrated the porosity of the material. For the same material mass, the CoPt mesoporous nanowires present a surface area 16 times greater than compact ones, and comparable to that observed for commercial carbon-supported platinum nanoparticles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

beta-dicarbonyl compounds were oxidized electrocatalytically, with fragmentation and loss of "ch2", using ceric methanesulphonate as a mediator. 2,4-pentanedione yields acetic acid (90%), methyl acetoacetate yields acetic acid (84%) plus methanol and dimethyl malonate yields methanol (64%). For 1,3-diphenyl-1,3-propanedione and 1,3-cyclohexanedione, benzoic acid (61% yield) and glutaric acid (75% yield) were obtained, respectively. Methyl cyanoacetate and malononitrile were inert.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The [Ru3O(Ac)6(py)2(CH3OH)]+ cluster provides an effective electrocatalytic species for the oxidation of methanol under mild conditions. This complex exhibits characteristic electrochemical waves at -1.02, 0.15 and 1.18 V, associated with the Ru3III,II,II/Ru3III,III,II/Ru 3III,III,III /Ru3IV,III,III successive redox couples, respectively. Above 1.7 V, formation of two RuIV centers enhances the 2-electron oxidation of the methanol ligand yielding formaldehyde, in agreement with the theoretical evolution of the HOMO levels as a function of the oxidation states. This work illustrates an important strategy to improve the efficiency of the oxidation catalysis, by using a multicentered redox catalyst and accessing its multiple higher oxidation states.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Methanol steam reforming reaction was studied over Cu(5 wt.%)/CeO2 with and without the presence of Zn. The Zn addition decreased the Cu+2 reducibility and increased the oxygen mobility of ceria. The main products were CO2 and H2 with small amount of CO. Selectivity to CO decreased with the Zn addition and it was lower at lower reaction temperatures and lower space velocities. At 230 ºC and W/F MeOH = 648 g min mol-1 selectivities to H2 and to CO2 were 100% on Zn/Cu/Ce. The catalytic results indicated that CO was mainly a secondary product formed from reverse water gas shift reaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrosynthesis of dimethyl carbonate (DMC) from methanol and carbon monoxide using an Cu(phen)Cl2 catalyst was achieved at room temperature and atmospheric pressure. The catalytic activity of the ligand 1,10-phenanthroline (phen) and the catalytic system were analyzed. The IR characterization results for the complex catalyst showed that copper ions were coordinated by nitrogen atoms of phen. In addition, the effects of the influencing factors, such as reaction time (t), reaction temperature (T) and the surface area of the working electrode (SWE) were studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Maranhão state in Brazil presents a big potential for the cultivation of several oleaginous species, such as babassu, soybean, castor oil plant, etc... These vegetable oils can be transformed into biodiesel by the transesterification reaction in an alkaline medium, using methanol or ethanol. The biodiesel production from a blend of these alcohols is a way of adding the technical and economical advantages of methanol to the environmental advantages of ethanol. The optimized alcohol blend was observed to be a methanol/ethanol volume ratio of 80 % MeOH: 20 % EtOH. The ester content was of 98.70 %, a value higher than the target of the ANP, 96.5 % (m/m), and the biodiesel mass yield was of 95.32 %. This biodiesel fulfills the specifications of moisture, specific gravity, kinematic viscosity and percentages of free alcohols (methanol plus ethanol) and free glycerin.