1000 resultados para Meteorology Observations


Relevância:

30.00% 30.00%

Publicador:

Resumo:

[ 1] The European Centre for Medium-Range Weather Forecasts (ECMWF) 40-year Reanalysis (ERA-40) ozone and water vapor reanalysis fields during the 1990s have been compared with independent satellite data from the Halogen Occultation Experiment (HALOE) and Microwave Limb Sounder (MLS) instruments on board the Upper Atmosphere Research Satellite (UARS). In addition, ERA-40 has been compared with aircraft data from the Measurements of Ozone and Water Vapour by Airbus In-Service Aircraft (MOZAIC) program. Overall, in comparison with the values derived from the independent observations, the upper stratosphere in ERA-40 has about 5 - 10% more ozone and 15 - 20% less water vapor. This dry bias in the reanalysis appears to be global and extends into the middle stratosphere down to 40 hPa. Most of the discrepancies and seasonal variations between ERA-40 and the independent observations occur within the upper troposphere over the tropics and the lower stratosphere over the high latitudes. ERA-40 reproduces a weaker Antarctic ozone hole, and of less vertical extent, than the independent observations; values in the ozone maximum in the tropical stratosphere are lower for the reanalysis. ERA-40 mixing ratios of water vapor are considerably larger than those for MOZAIC, typically by 20% in the tropical upper troposphere, and they may exceed 60% in the lower stratosphere over high latitudes. The results imply that the Brewer-Dobson circulation in the ECMWF reanalysis system is too fast, as is also evidenced by deficiencies in the way ERA-40 reproduces the water vapor "tape recorder'' signal in the tropical stratosphere. Finally, the paper examines the biases and their temporal variation during the 1990s in the way ERA-40 compares to the independent observations. We also discuss how the evaluation results depend on the instrument used, as well as on the version of the data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this chapter is to give a general overview of the atmospheric circulation, highlighting the main concepts that are important for a basic understanding of meteorology and atmospheric dynamics relevant to atmospheric data assimilation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new Bayesian algorithm for retrieving surface rain rate from Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) over the ocean is presented, along with validations against estimates from the TRMM Precipitation Radar (PR). The Bayesian approach offers a rigorous basis for optimally combining multichannel observations with prior knowledge. While other rain-rate algorithms have been published that are based at least partly on Bayesian reasoning, this is believed to be the first self-contained algorithm that fully exploits Bayes’s theorem to yield not just a single rain rate, but rather a continuous posterior probability distribution of rain rate. To advance the understanding of theoretical benefits of the Bayesian approach, sensitivity analyses have been conducted based on two synthetic datasets for which the “true” conditional and prior distribution are known. Results demonstrate that even when the prior and conditional likelihoods are specified perfectly, biased retrievals may occur at high rain rates. This bias is not the result of a defect of the Bayesian formalism, but rather represents the expected outcome when the physical constraint imposed by the radiometric observations is weak owing to saturation effects. It is also suggested that both the choice of the estimators and the prior information are crucial to the retrieval. In addition, the performance of the Bayesian algorithm herein is found to be comparable to that of other benchmark algorithms in real-world applications, while having the additional advantage of providing a complete continuous posterior probability distribution of surface rain rate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Eyjafjallajökull volcano in Iceland erupted explosively on 14 April 2010, emitting a plume of ash into the atmosphere. The ash was transported from Iceland toward Europe where mostly cloud-free skies allowed ground-based lidars at Chilbolton in England and Leipzig in Germany to estimate the mass concentration in the ash cloud as it passed overhead. The UK Met Office's Numerical Atmospheric-dispersion Modeling Environment (NAME) has been used to simulate the evolution of the ash cloud from the Eyjafjallajökull volcano during the initial phase of the ash emissions, 14–16 April 2010. NAME captures the timing and sloped structure of the ash layer observed over Leipzig, close to the central axis of the ash cloud. Relatively small errors in the ash cloud position, probably caused by the cumulative effect of errors in the driving meteorology en route, result in a timing error at distances far from the central axis of the ash cloud. Taking the timing error into account, NAME is able to capture the sloped ash layer over the UK. Comparison of the lidar observations and NAME simulations has allowed an estimation of the plume height time series to be made. It is necessary to include in the model input the large variations in plume height in order to accurately predict the ash cloud structure at long range. Quantitative comparison with the mass concentrations at Leipzig and Chilbolton suggest that around 3% of the total emitted mass is transported as far as these sites by small (<100 μm diameter) ash particles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The climate and natural variability of the large-scale stratospheric circulation simulated by a newly developed general circulation model are evaluated against available global observations. The simulation consisted of a 30-year annual cycle integration performed with a comprehensive model of the troposphere and stratosphere. The observations consisted of a 15-year dataset from global operational analyses of the troposphere and stratosphere. The model evaluation concentrates on the simulation of the evolution of the extratropical stratospheric circulation in both hemispheres. The December–February climatology of the observed zonal mean winter circulation is found to be reasonably well captured by the model, although in the Northern Hemisphere upper stratosphere the simulated westerly winds are systematically stronger and a cold bias is apparent in the polar stratosphere. This Northern Hemisphere stratospheric cold bias virtually disappears during spring (March–May), consistent with a realistic simulation of the spring weakening of the mean westerly winds in the model. A considerable amount of monthly interannual variability is also found in the simulation in the Northern Hemisphere in late winter and early spring. The simulated interannual variability is predominantly caused by polar warmings of the stratosphere, in agreement with observations. The breakdown of the Northern Hemisphere stratospheric polar vortex appears therefore to occur in a realistic way in the model. However, in early winter the model severely underestimates the interannual variability, especially in the upper troposphere. The Southern Hemisphere winter (June–August) zonal mean temperature is systematically colder in the model, and the simulated winds are somewhat too strong in the upper stratosphere. Contrary to the results for the Northern Hemisphere spring, this model cold bias worsens during the Southern Hemisphere spring (September–November). Significant discrepancies between the model results and the observations are therefore found during the breakdown of the Southern Hemisphere polar vortex. For instance, the simulated Southern Hemisphere stratosphere westerly jet continuously decreases in intensity more or less in situ from June to November, while the observed stratospheric jet moves downward and poleward.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Forecasts of precipitation and water vapor made by the Met Office global numerical weather prediction (NWP) model are evaluated using products from satellite observations by the Special Sensor Microwave Imager/Sounder (SSMIS) and Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) for June–September 2011, with a focus on tropical areas (308S–308N). Consistent with previous studies, the predicted diurnal cycle of precipitation peaks too early (by ;3 h) and the amplitude is too strong over both tropical ocean and land regions. Most of the wet and dry precipitation biases, particularly those over land, can be explained by the diurnal-cycle discrepancies. An overall wet bias over the equatorial Pacific and Indian Oceans and a dry bias over the western Pacific warmpool and India are linked with similar biases in the climate model, which shares common parameterizations with the NWP version. Whereas precipitation biases develop within hours in the NWP model, underestimates in water vapor (which are assimilated by the NWP model) evolve over the first few days of the forecast. The NWP simulations are able to capture observed daily-to-intraseasonal variability in water vapor and precipitation, including fluctuations associated with tropical cyclones.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Fennec climate program aims to improve understanding of the Saharan climate system through a synergy of observations and modelling. We present a description of the Fennec airborne observations during 2011 and 2012 over the remote Sahara (Mauritania and Mali) and the advances in the understanding of mineral dust and boundary layer processes they have provided. Aircraft instrumentation aboard the UK FAAM BAe146 and French SAFIRE Falcon 20 is described, with specific focus on instrumentation specially developed and relevant to Saharan meteorology and dust. Flight locations, aims and associated meteorology are described. Examples and applications of aircraft measurements from the Fennec flights are presented, highlighting new scientific results delivered using a synergy of different instruments and aircraft. These include: (1) the first airborne measurement of dust particles sized up to 300 microns and associated dust fluxes in the Saharan atmospheric boundary layer (SABL), (2) dust uplift from the breakdown of the nocturnal low-level jet before becoming visible in SEVIRI satellite imagery, (3) vertical profiles of the unique vertical structure of turbulent fluxes in the SABL, (4) in-situ observations of processes in SABL clouds showing dust acting as CCN and IN at −15 °C, (5) dual-aircraft observations of the SABL dynamics, thermodynamics and composition in the Saharan heat low region (SHL), (6) airborne observations of a dust storm associated with a cold-pool (haboob) issued from deep convection over the Atlas, (7) the first airborne chemical composition measurements of dust in the SHL region with differing composition, sources (determined using Lagrangian backward trajectory calculations) and absorption properties between 2011 and 2012, (8) coincident ozone and dust surface area measurements suggest coarser particles provide a route for ozone depletion, (9) discrepancies between airborne coarse mode size distributions and AERONET sunphotometer retrievals under light dust loadings. These results provide insights into boundary layer and dust processes in the SHL region – a region of substantial global climatic importance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Measurements of down-welling microwave radiation from raining clouds performed with the Advanced Microwave Radiometer for Rain Identification (ADMIRARI) radiometer at 10.7-21-36.5 GHz during the Global Precipitation Measurement Ground Validation ""Cloud processes of the main precipitation systems in Brazil: A contribution to cloud resolving modeling and to the Global Precipitation Measurement"" (CHUVA) campaign held in Brazil in March 2010 represent a unique test bed for understanding three-dimensional (3D) effects in microwave radiative transfer processes. While the necessity of accounting for geometric effects is trivial given the slant observation geometry (ADMIRARI was pointing at a fixed 30 elevation angle), the polarization signal (i.e., the difference between the vertical and horizontal brightness temperatures) shows ubiquitousness of positive values both at 21.0 and 36.5 GHz in coincidence with high brightness temperatures. This signature is a genuine and unique microwave signature of radiation side leakage which cannot be explained in a 1D radiative transfer frame but necessitates the inclusion of three-dimensional scattering effects. We demonstrate these effects and interdependencies by analyzing two campaign case studies and by exploiting a sophisticated 3D radiative transfer suited for dichroic media like precipitating clouds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We developed a general method for determination of water production rates from groundbased visual observations and applied it to Comet Hale-Bopp. Our main objective is to extend the method to include total visual magnitude observations obtained with CCD detector and V filter in the analysis of total visual magnitudes. We compare the CCD V-broadband careful observations of Liller [Liller, W. Pre-perihelion CCD photometry of Comet 1995 01 (Hale-Bopp). Planet. Space Sci. 45, 1505-1513, 1997; Liller, W. CCD photometry of Comet C/1995 O1 (Hale-Bopp): 1995-2000. Int. Comet Quart. 23(3), 93-97, 2001] with the total visual magnitude observations from experienced international observers found in the International Comet Quarterly (ICQ) archive. A data set of similar to 400 CCD observations covering about the same 6 years time span of the similar to 12,000 ICQ selected total visual magnitude observations were used in the analysis. A least-square method applied to the water production rates, yields power laws as a function of the heliocentric distances for the pre- and post-perihelion phases. The average dimension of the nucleus as well as its effective active area is determined and compared with values published in the literature. (C) 2009 COSPAR. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the first decades of the 20th century, aerological observations were for the first time performed in tropical regions. One of the most prominent endeavours in this respect was ARTHUR BERSON’s aerological expedition to East Africa. Although the main target was the East African monsoon circulation, the expedition provided also other insights that profoundly changed meteorology and climatology. BERSON observed that the tropical tropopause was much higher and colder than that over midlatitudes. Moreover, westerly winds were observed in the lower stratosphere, apparently contradicting the high-altitude equatorial easterly winds that were known since the Krakatoa eruption (‘‘Krakatoa easterlies’’). The puzzle was only resolved five decades later with the discovery of the Quasi-Biennial Oscillation (QBO). In this paper we briefly summarize the expedition of BERSON and review the results in a historical context and in the light of the current research. In the second part of the paper we re-visit BERSON’s early aerological observations, which we have digitized. We compare the observed wind profiles with corresponding profiles extracted from the ‘‘Twentieth Century Reanalysis’’, which provides global three-dimensional weather information back to 1871 based on an assimilation of sea-level and surface pressure data. The comparison shows a good agreement at the coast but less good agreement further inland, at the shore of Lake Victoria, where the circulation is more complex. These results demonstrate that BERSON’s observations are still valuable today as input to current reanalysis systems or for their validation.