926 resultados para Metals--Effect of temperature on.
Resumo:
The Syagrus romanzoffiana is a specie of the Arecaccae family, native of Brazil, frequently used in landscape architecture. Its propagation is by seeds, however, there is little information in the literature about seed germination of this ornamental palm. The objective of this work was to study the effects of temperatures on seed germination of Syagrus romanzoffliana. The experimental design used was entirely randomized, with six temperatures (20 degrees C, 25 degrees C, 30 degrees C and 35 degrees C, constant and 20-30 degrees C and 25-35 degrees C alternated), photoperiod of 12 hours, and five replications of 20 seeds each. The seeds were placed in plastic boxes with sand, counting daily germination until 43(th) day. The percentage of seed germination (43(th) day) and the speed germination index (SGI) were evaluated. The conclusion was that there was no germination at a constant temperature of 20 degrees C and in the alternated temperature of 20-30 degrees C; the higher germination percentages were verified in the constant temperatures of 30 degrees C and 35 degrees C that didn't differ statistically from the temperature of 25-35 degrees C. The germination was faster at a constant temperature of 30 degrees C.
Resumo:
GaAsSbN/GaAs strained-layer single quantum wells grown on a GaAs substrate by molecular-beam epitaxy with different N concentrations were studied using the photoluminescence (PL) technique in the temperature range from 9 to 296 K. A strong redshift in optical transition energies induced by a small increase in N concentration has been observed in the PL spectra. This effect can be explained by the interaction between a narrow resonant band formed by the N-localized states and the conduction band of the host semiconductor. Excitonic transitions in the quantum wells show a successive red/blue/redshift with increasing temperature in the 2-100 K range. The activation energies of nonradiative channels responsible for a strong thermal quenching are deduced from an Arrhenius plot of the integrated PL intensity. (C) 2003 American Institute of Physics.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The parasitic mite Acarophenax lacunatus kills the eggs upon which it feeds and seems to have potential as a biological control agent of stored grain pests. The lack of biological studies on this mite species led to the present study carried out in laboratory conditions at eight different temperatures (ranging from 20 to 41°C) and 60% relative humidity using Rhyzopertha dominica as host. The higher the temperature, the faster: (1) the attachment of female mites to the host egg (varying from 1 to 5 h); (2) the increase in body size of physogastric females (about twice faster at 40°C than at 20°C); and (3) the generation time (ranging from 40 to 220 h). In addition, the higher the temperature, the shorter the maximum female longevity (ranging from about 75 to 300 h). The two estimated temperature thresholds for development of A. lacunatus on R. dominica were 18 and 40°C. The average number of female and male offspring per gravid mite were 12.8 and 1.0, respectively, with sex ratios (females/total) ranging from 0.91 to 0.94 (maximum at 30°C). The net reproductive rate and intrinsic rate of increase also presented maximum values at 30°C (12.1 and 0.04, respectively).
Resumo:
The purpose of this study was to investigate the penetration of an aggressive self-etching adhesive system at refrigerated and room temperatures into ground and unground enamel surfaces. Thirty extracted human teeth were used to measure adhesive penetration into enamel by light microscopy analysis (x400). The unground enamel surfaces were cleaned with pumice and water using a rotary dental brush. For each specimen, part of the unground enamel was manually ground and part was kept intact. A self-etch adhesive was evaluated for its ability to penetrate ground and unground enamel surfaces at room temperature (25 degrees C), at 30 minutes after removal from the refrigerator, and immediately after removal from the refrigerator (6 degrees C). Data were analyzed using variance and the Tukey test, which revealed significant differences in length of penetration of this material when applied on ground and unground enamel surfaces and between the different temperatures used (P > .05). The self-etching system used in this study had significantly lower penetration into unground enamel and at 6 degrees C (P < .05). No statistical difference was found between the interactions of these factors. It was concluded that the self-etching system produced the best penetration into ground enamel surface at room temperature (25 degrees C) and at 30 minutes after removing the specimens from the refrigerator.
Resumo:
Antirrhinum majus L. and Senecio douglasii DC. are herbaceous perennial ornamental plants used in landscaping. The multiplication of these plants is by seed; however, there are still doubts about the temperature that can provide higher rates and speed of germination. Thus the aim was to study the effect of temperature on seed germination of A. majus and S. douglasii. The study was conducted separately for each species. The experimental design was entirely randomized with six temperature conditions (temperature controlled constant of 20, 25, 30, 35°C and alternating temperatures of 20-30 and 25-35°C with a photoperiod of 12 hours) with four replications of 100 seeds each. Total germination percentage and germination rate were determined. The means were compared by Tukey test at 5%. For A majus the highest germination percentage was observed at 20°C that did not differ statistically from other temperatures. The highest germination rate was obtained at the temperature of 20 and 25°C. For S. douglasii seeds it was observed that the highest germination percentage and germination rate occurred at 20°C. The lower temperature showed the better percentage and germination rate for these species.
Resumo:
Bacillus cereus is a bacterium with deteriorating potential for dairy products, by being a psychrotrophic organism producer of lipases and proteases. This study evaluated the psychrotrophic behavior, lipolytic and proteolytic activity at 30°C, 10°C and 7°C of 86 strains of B. cereus lato sensu isolated from dairy products, marketed in Southern Brazil. It was also evaluated the optimal temperature for protease production. No strain grew at 7°C; but at 10°C, 84.9% of strains have grown. Only one strain had lipolytic activity at 30°C, and none at 7°C. At 10°C, 16.3% of strains produced lipases. All the strains presented proteolytic activity at 30°C; and at 10°C, 72.1% had this activity, and at 7°C, only 4.6%, an amount significantly lower (p < 0.05). The temperature of 20°C promoted the highest proteolytic activity, and at 10°C, the lowest activity. B. cereus can produce lipases and proteases at room and marginal chilling temperatures, causing technological defects in dairy products stored under these conditions. © 2008 IFRJ.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Water-miscible ionic liquids (ILs) may be salted out using kosmotropic salts such as potassium phosphate (K3PO4) to form salt-salt aqueous biphasic systems (ABS). The effect of temperature on these systems has been studied using phase diagrams and it is observed that the degree of binodal shift decreases (requiring lower IL and kosmotropic salt concentrations) with the increase of temperature following the trend [C(4)mim]Cl > [C(4)py]Cl > [C(4)mmim] Cl > [N-4444]Cl. This trend can be correlated with the decreasing hydrogen bonding abilities of each salt. The phase behavior was also interpreted on the basis of critical solution temperature behavior of pure aqueous ionic liquid solutions. Additionally, the distribution of alcohols in these systems was studied as a function of temperature and it was found that the distribution ratios did not change with changes in temperature. The Gibbs energy of transfer of a methylene group in these systems and correlation to tie-line length was also determined. It was concluded that while the miscibility of alcohols increases in the ILs with increasing temperature, phase divergence in the aqueous biphasic system decreases, and thus these competing forces tend to cancel each other out for small polar molecules. A comparison is provided for the response to temperature in the currently studied salt-salt systems and analogous ABS formed by the addition of hydrophilic polymers to kosmotropic salts (polymer-salt) or other polymers (polymer-polymer).
Resumo:
Objectives: This study evaluated the degree of conversion (DC) and working time (WT) of two commercial, dual-cured resin cements polymerized at varying temperatures and under different curing-light accessible conditions, using Fourier transformed infrared analysis (FTIR). Materials and Methods: Calibra (Cal; Dentsply Caulk) and Variolink II (Ivoclar Vivadent) were tested at 25 degrees C or preheated to 37 degrees C or 50 degrees C and applied to a similar-temperature surface of a horizontal attenuated-total-reflectance unit (ATR) attached to an infrared spectrometer. The products were polymerized using one of four conditions: direct light exposure only (600 mW/cm(2)) through a glass slide or through a 1.5- or 3.0-mm-thick ceramic disc (A2 shade, IPS e.max, Ivoclar Vivadent) or allowed to self-cure in the absence of light curing. FTIR spectra were recorded for 20 min (1 spectrum/s, 16 scans/spectrum, resolution 4 cm(-1)) immediately after application to the ATR. DC was calculated using standard techniques of observing changes in aliphatic-to-aromatic peak ratios precuring and 20-min postcuring as well as during each 1-second interval. Time-based monomer conversion analysis was used to determine WT at each temperature. DC and WT data (n=6) were analyzed by two-way analysis of variance and Tukey post hoc test (p=0.05). Results: Higher temperatures increased DC regardless of curing mode and product. For Calibra, only the 3-mm-thick ceramic group showed lower DC than the other groups at 25 degrees C (p=0.01830), while no significant difference was observed among groups at 37 degrees C and 50 degrees C. For Variolink, the 3-mm-thick ceramic group showed lower DC than the 1-mm-thick group only at 25 degrees C, while the self-cure group showed lower DC than the others at all temperatures (p=0.00001). WT decreased with increasing temperature: at 37 degrees C near 70% reduction and at 50 degrees C near 90% for both products, with WT reduction reaching clinically inappropriate times in some cases (p=0.00001). Conclusion: Elevated temperature during polymerization of dual-cured cements increased DC. WT was reduced with elevated temperature, but the extent of reduction might not be clinically acceptable.
Resumo:
Tolerance to low temperature and high pressure may allow shallow-water species to extend bathymetric range in response to changing climate, but adaptation to contrasting shallow-water environments may affect tolerance to these factors. The brackish shallow-water shrimp Palaemon varians demonstrates remarkable tolerance to elevated hydrostatic pressure and low temperature, but inhabits a highly variable environment: environmental adaptation may therefore make P. varians tolerances unrepresentative of other shallow-water species. Critical thermal maximum (CTmax), critical hydrostatic pressure maximum (CPmax), and acute respiratory response to hydrostatic pressure were assessed in the shallow-water shrimp Palaemon serratus, which inhabits a more stable intertidal habitat. P. serratus’ CTmax was 22.3°C when acclimated at 10°C, and CPmax was 5.9, 10.1, and 14.1 MPa when acclimated at 5, 10, and 15°C respectively: these critical tolerances were consistently lower than P. varians. Respiratory responses to acute hyperbaric exposures similarly indicated lower tolerance to hydrostatic pressure in P. serratus than in P. varians. Contrasting tolerances likely reflect physiological adaptation to differing environments and reveal that the capacity for depth-range extension may vary among species from different habitats.
Resumo:
The flux of organic particles below the mixed layer is one major pathway of carbon from the surface into the deep ocean. The magnitude of this export flux depends on two major processes-remineralization rates and sinking velocities. Here, we present an efficient method to measure sinking velocities of particles in the size range from approximately 3-400 µm by means of video microscopy (FlowCAM®). The method allows rapid measurement and automated analysis of mixed samples and was tested with polystyrene beads, different phytoplankton species, and sediment trap material. Sinking velocities of polystyrene beads were close to theoretical values calculated from Stokes' Law. Sinking velocities of the investigated phytoplankton species were in reasonable agreement with published literature values and sinking velocities of material collected in sediment trap increased with particle size. Temperature had a strong effect on sinking velocities due to its influence on seawater viscosity and density. An increase in 9 °C led to a measured increase in sinking velocities of 40 %. According to this temperature effect, an average temperature increase in 2 °C as projected for the sea surface by the end of this century could increase sinking velocities by about 6 % which might have feedbacks on carbon export into the deep ocean.