968 resultados para Metals at high temperatures
Resumo:
We examined the burst swimming performance of two Antarctic fishes, Trematomus bernacchii and T. centronotus, at five temperatures between -1 degreesC and 10 degreesC. As Antarctic fishes are considered one of the most cold specialised and stenothermal of all ectotherms, we predicted they would possess a narrow thermal performance breadth for burst swimming and a correlative decrease in performance at high temperatures. Burst swimming was assessed by videotaping swimming sequences with a 50-Hz video camera and analysing the sequences frame-by-frame to determine maximum velocity, the distance moved throughout the initial 200 ms, and the time taken to reach maximum velocity. In contrast to our prediction, we found both species possessed a wide thermal performance breadth for burst swimming. Although maximum swimming velocity for both T. bernacchii and T. centronotus was significantly highest at 6 degreesC, maximum velocity at ah other test temperatures was less than 20% lower. Thus, it appears that specialisation to a highly stable and cold environment is not necessarily associated with a narrow thermal performance breadth for burst swimming in Antarctic fish. We also examined the ability of the Antarctic fish Pagothenia borchgrevinki to acclimate their burst-swimming performance to different temperatures. We exposed P, borchgrevinki to either -1 degreesC or 4 degreesC for 4 weeks and tested their burst-swimming performance at four temperatures between -1 degreesC and 10 degreesC. Burst-swimming performance of Pagothenia borchgrevinki was unaffected by exposure to either -1 degreesC or 4 degreesC for 4 weeks. Maximum swimming velocity of both acclimation groups was thermally independent over the total temperature range of -1 degreesC to 10 degreesC. Therefore, the loss of any capacity to restructure the phenotype and an inability to thermally acclimate swimming performance appears to be associated with inhabiting a highly stable thermal environment.
Resumo:
Coastal low-level jets (CLLJ) are a low-tropospheric wind feature driven by the pressure gradient produced by a sharp contrast between high temperatures over land and lower temperatures over the sea. This contrast between the cold ocean and the warm land in the summer is intensified by the impact of the coastal parallel winds on the ocean generating upwelling currents, sharpening the temperature gradient close to the coast and giving rise to strong baroclinic structures at the coast. During summertime, the Iberian Peninsula is often under the effect of the Azores High and of a thermal low pressure system inland, leading to a seasonal wind, in the west coast, called the Nortada (northerly wind). This study presents a regional climatology of the CLLJ off the west coast of the Iberian Peninsula, based on a 9km resolution downscaling dataset, produced using the Weather Research and Forecasting (WRF) mesoscale model, forced by 19 years of ERA-Interim reanalysis (1989-2007). The simulation results show that the jet hourly frequency of occurrence in the summer is above 30% and decreases to about 10% during spring and autumn. The monthly frequencies of occurrence can reach higher values, around 40% in summer months, and reveal large inter-annual variability in all three seasons. In the summer, at a daily base, the CLLJ is present in almost 70% of the days. The CLLJ wind direction is mostly from north-northeasterly and occurs more persistently in three areas where the interaction of the jet flow with local capes and headlands is more pronounced. The coastal jets in this area occur at heights between 300 and 400 m, and its speed has a mean around 15 m/s, reaching maximum speeds of 25 m/s.
Resumo:
In this study, an experimental investigation into the shear strength behaviour of aluminium alloy single-lap adhesive joints was carried out in order to understand the effect of temperature on the strength of adhesively bonding joints. Single lap joints (SLJs) were fabricated and tested at RT and high temperatures (100ºC, 125ºC, 150ºC, 175ºC and 200ºC). Results showed that the failure loads of the single-lap joint test specimens vary with temperature and this needs to be considered in any design procedure. It is shown that, although the tensile stress decreased with temperature, the lap-shear strength of the adhesive increased with increasing of temperature up to the glass transition of the adhesive (Tg) and decreased for tests above the Tg.
Resumo:
Mestrado em Engenharia Química - Ramo Optimização Energética na Indústria Química
Resumo:
Results of a field and microstructural study between the northern and the central bodies of the Lanzo plagioclase peridotite massif (NW Italy) indicate that the spatial distribution of deformation is asymmetric across kilometre-scale mantle shear zones. The southwestern part of the shear zone (footwall) shows a gradually increasing degree of deformation from porphyroclastic peridotites to mylonite, whereas the northeastern part (hanging wall) quickly grades into weakly deformed peridotites. Discordant gabbroic and basaltic dykes are asymmetrically distributed and far more abundant in the footwall of the shear zone. The porphyroclastic peridotite displays porphyroclastic zones and domains of igneous crystallization whereas mylonites are characterized by elongated porphyroclasts, embedded between fine-grained, polycrystalline bands of olivine, plagioclase, clinopyroxene, orthopyroxene, spinel, rare titanian pargasite, and domains of recrystallized olivine. Two types of melt impregnation textures have been found: (1) clinopyroxene porphyroclasts incongruently reacted with migrating melt to form orthopyroxene plagioclase; (2) olivine porphyroclasts are partially replaced by interstitial orthopyroxene. The meltrock reaction textures tend to disappear in the mylonites, indicating that deformation in the mylonite continued under subsolidus conditions. The pyroxene chemistry is correlated with grain size. High-Al pyroxene cores indicate high temperatures (11001030C), whereas low-Al neoblasts display lower final equilibration temperatures (860C). The spinel Cr-number [molar Cr/(Cr Al)] and TiO2 concentrations show extreme variability covering almost the entire range known from abyssal peridotites. The spinel compositions of porphyroclastic peridotites from the central body are more variable than spinel from mylonite, mylonite with ultra-mylonite bands, and porphyroclastic rocks of the northern body. The spinel compositions probably indicate disequilibrium and would favour rapid cooling, and a faster exhumation of the central peridotite body, relative to the northern one. Our results indicate that melt migration and high-temperature deformation are juxtaposed both in time and space. Meltrock reaction may have caused grain-size reduction, which in turn led to localization of deformation. It is likely that melt-lubricated, actively deforming peridotites acted as melt focusing zones, with permeabilities higher than the surrounding, less deformed peridotites. Later, under subsolidus conditions, pinning in polycrystalline bands in the mylonites inhibited substantial grain growth and led to permanent weak zones in the upper mantle peridotite, with a permeability that is lower than in the weakly deformed peridotites. Such an inversion in permeability might explain why actively deforming, fine-grained peridotite mylonite acted as a permeability barrier and why ascending mafic melts might terminate and crystallize as gabbros along actively deforming shear zones. Melt-lubricated mantle shear zones provide a mechanism for explaining the discontinuous distribution of gabbros in oceancontinent transition zones, oceanic core complexes and ultraslow-spreading ridges.
Resumo:
Waste combustion has gone from being a volume reducing discarding-method to an energy recovery process for unwanted material that cannot be reused or recycled. Different fractions of waste are used as fuel today, such as; municipal solid waste, refuse derived fuel, and solid recovered fuel. Furthermore, industrial waste, normally a mixture between commercial waste and building and demolition waste, is common, either as separate fuels or mixed with, for example, municipal solid waste. Compared to fossil or biomass fuels, waste mixtures are extremely heterogeneous, making it a complicated fuel. Differences in calorific values, ash content, moisture content, and changing levels of elements, such as Cl and alkali metals, are common in waste fuel. Moreover, waste contains much higher levels of troublesome trace elements, such as Zn, which is thought to accelerate a corrosion process. Varying fuel quality can be strenuous on the boiler system and may cause fouling and corrosion of heat exchanger surfaces. This thesis examines waste fuels and waste combustion from different angles, with the objective of giving a better understanding of waste as an important fuel in today’s fuel economy. Several chemical characterisation campaigns of waste fuels over longer time periods (10-12 months) was used to determine the fossil content of Swedish waste fuels, to investigate possible seasonal variations, and to study the presence of Zn in waste. Data from the characterisation campaigns were used for thermodynamic equilibrium calculations to follow trends and determine the effect of changing concentrations of various elements. The thesis also includes a study of the thermal behaviour of Zn and a full—scale study of how the bed temperature affects the volatilisation of alkali metals and Zn from the fuel. As mixed waste fuel contains considerable amounts of fresh biomass, such as wood, food waste, paper etc. it would be wrong to classify it as a fossil fuel. When Sweden introduced waste combustion as a part of the European Union emission trading system in the beginning of 2013 there was a need for combustion plants to find a usable and reliable method to determine the fossil content. Four different methods were studied in full-scale of seven combustion plants; 14Canalysis of solid waste, 14C-analysis of flue gas, sorting analysis followed by calculations, and a patented balance method that is using a software program to calculate the fossil content based on parameters from the plant. The study showed that approximately one third of the coal in Swedish waste mixtures has fossil origins and presented the plants with information about the four different methods and their advantages and disadvantages. Characterisation campaigns also showed that industrial waste contain higher levels of trace elements, such as Zn. The content of Zn in Swedish waste fuels was determined to be approximately 800 mg kg-1 on average, based on 42 samples of solid waste from seven different plants with varying mixtures between municipal solid waste and industrial waste. A review study of the occurrence of Zn in fuels confirmed that the highest amounts of Zn are present in waste fuels rather than in fossil or biomass fuels. In tires, Zn is used as a vulcanizing agent and can reach concentration values of 9600-16800 mg kg-1. Waste Electrical and Electronic Equipment is the second Zn-richest fuel and even though on average Zn content is around 4000 mg kg-1, the values of over 19000 mg kg-1 were also reported. The increased amounts of Zn, 3000-4000 mg kg-1, are also found in municipal solid waste, sludge with over 2000 mg kg-1 on average (some exceptions up to 49000 mg kg-1), and other waste derived fuels (over 1000 mg kg-1). Zn is also found in fossil fuels. In coal, the average level of Zn is 100 mg kg-1, the higher amount of Zn was only reported for oil shale with values between 20-2680 mg kg-1. The content of Zn in biomass is basically determined by its natural occurrence and it is typically 10-100 mg kg-1. The thermal behaviour of Zn is of importance to understand the possible reactions taking place in the boiler. By using thermal analysis three common Zn-compounds were studied (ZnCl2, ZnSO4, and ZnO) and compared to phase diagrams produced with thermodynamic equilibrium calculations. The results of the study suggest that ZnCl2(s/l) cannot exist readily in the boiler due to its volatility at high temperatures and its conversion to ZnO in oxidising conditions. Also, ZnSO4 decomposes around 680°C, while ZnO is relatively stable in the temperature range prevailing in the boiler. Furthermore, by exposing ZnO to HCl in a hot environment (240-330°C) it was shown that chlorination of ZnO with HCl gas is possible. Waste fuel containing high levels of elements known to be corrosive, for example, Na and K in combination with Cl, and also significant amounts of trace elements, such as Zn, are demanding on the whole boiler system. A full-scale study of how the volatilisation of Na, K, and Zn is affected by the bed temperature in a fluidised bed boiler was performed parallel with a lab-scale study with the same conditions. The study showed that the fouling rate on deposit probes were decreased by 20 % when the bed temperature was decreased from 870°C to below 720°C. In addition, the lab-scale experiments clearly indicated that the amount of alkali metals and Zn volatilised depends on the reactor temperature.
Resumo:
Four groups of rainbow trout, Salmo gairdneri, were acclimated to 2°, 10°, and 18°e, and to a diurnal temperature cycle (100 ± 4°C). To evaluate the influence of cycling temperatures in terms of an immediate as opposed to acclimatory response various ventilatory-cardiovascular rate functions were observed for trout, either acclimated to cycling temperatures or acclimated to constant temperatures and exposed to a diurnal temperature cycle for the first time (10° ± 4°C for trout acclimated to 10°C; 18°+ 4°C for trout acclimated to l8°e). Gill resistance and the cardiac to ventilatory rate ratio were then calculated. Following a post preparatory recovery period of 36 hr, measurements were made over a 48 hour period with the first 24 hours being at constant temperature in the case of statically-acclimated fish followed by 24 hours under cyclic temperature conditions. Trout exhibited marked changes in oxygen consumption (Vo ) with temp- 2 erature both between acclimation groups, and in response to the diurnal temperature cycle. This increase in oxygen uptake appears to have been achieved by adjustment of ventilatory and, to some extent, cardiovascular activity. Trout exhibited significant changes in ventilatory rate (VR), stroke volume (Vsv), and flow (VG) in response to temperature. Marked changes in cardiac rate were also observed. These findings are discussed in relation to their importance in convective oxygen transport via water and blood at the gills and tissues. Trout also exhibited marked changes in pressure waveforms associated with the action of the resp; ratory pumps with temperature. Mean differenti a 1 pressure increased with temperature as did gill resistance and utilization. This data is discussed in relation to its importance in diffusive oxygen transport and the conditions for gas exchange at the gills. With one exception, rainbow trout were able to respond to changes in oxygen demand and availability associated with changes in temperature by means of adjustments in ventilation, and possibly pafusion, and the conditions for gas exchange at the gills. Trout acclimated to 18°C, however, and exposed to high cyclic temperatures, showed signs of the ventilatory and cardiovascular distress problems commonly associated with low circulating levels of oxygen in the blood. It appears these trout were unable to fully meet the oxygen requirements associated with c~ling temperatures above 18°C. These findings were discussed in relation to possible limitations in the cardiovascular-ventilatory response at high temperatures. The response of trout acclimated to cycling temperatures was generally similar to that for trout acclimated to constant temperatures and exposed to cycling temperatures for the first time. This result suggested that both groups of fish may have been acclimated to a similar thermal range, regardless of the acclimation regime employed. Such a phenomenon would allow trout of either acclimation group to respond equally well to the imposed temperature cycle. Rainbow trout showed no evidence of significant diurnal rhythm in any parameters observed at constant temperatures (2°, 10°, and 18° C), and under a 12/12 light-dark photoperiod regime. This was not taken to indicate an absence of circadian rhythms in these trout, but rather a deficiency in the recording methods used in the study.
Resumo:
Dialysis and ultrafiltration were investigated as methods for measuring pH and ionic calcium and partitioning of divalent cations of milk at high temperatures. It was found that ionic calcium, pH, and total soluble divalent cations decreased as temperature increased between 20 and 80°C in both dialysates and ultrafiltration permeates. Between 90 and 110°C, ionic calcium and pH in dialysates continued to decrease as temperature increased, and the relationship between ionic calcium and temperature was linear. The permeabilities of hydrogen and calcium ions through the dialysis tubing were not changed after the tubing was sterilized for 1h at 120°C. There were no significant differences in pH and ionic calcium between dialysates from raw milk and those from a range of heat-treated milks. The effects of calcium chloride addition on pH and ionic calcium were measured in milk at 20°C and in dialysates collected at 110°C. Heat coagulation at 110°C occurred with addition of calcium chloride at 5.4mM, where pH and ionic calcium of the dialysate were 6.00 and 0.43mM, respectively. Corresponding values at 20°C were pH 6.66 and 2.10mM.
Resumo:
Melt-phase nucleophilic ring-opening polymerisation of macrocyclic aromatic ethers and thioethers at high temperatures within the cylindrical pores of an anodic-alumina membrane, followed by dissolution of the template, enables replication of the membrane's internal pore structure and so affords high-performance aromatic polymers with well-defined fibrillar or tubular morphologies.
Resumo:
Dialysis was performed to examine some of the properties of the soluble phase of calcium (Ca) fortified soymilk at high temperatures. Dialysates were obtained while heating soymilk at temperatures of 80 and 100 °C for 1 h and 121 °C for 15 min. It was found that the pH, total Ca, and ionic Ca of dialysates obtained at high temperature were all lower than in their corresponding nonheated Ca-fortified soymilk. Increasing temperature from 80 to 100 °C hardly affected Ca ion concentration ([Ca2+]) of dialysate obtained from Ca chloride-fortified soymilk, but it increased [Ca2+] in dialysates of Ca gluconate-fortified soymilk and Ca lactate-fortified soymilk fortified with 5 to 6 mM Ca. Dialysates obtained at 100 °C had lower pH than dialysate prepared at 80 °C. Higher Ca additions to soymilk caused a significant (P≤ 0.05) reduction in pH and an increase in [Ca2+] of these dialysates. When soymilk was dialyzed at 121 °C, pH, total Ca, and ionic Ca were further reduced. Freezing point depression (FPD) of dialysates increased as temperature increased but were lower than corresponding soymilk samples. This approach provides a means of estimating pH and ionic Ca in soymilks at high temperatures, in order to better understand their combined role on soymilk coagulation.
Resumo:
Hybrid vigour may help overcome the negative effects of climate change in rice. A popular rice hybrid (IR75217H), a heat-tolerant check (N22), and a mega-variety (IR64) were tested for tolerance of seed-set and grain quality to high-temperature stress at anthesis at ambient and elevated [CO2]. Under an ambient air temperature of 29 °C (tissue temperature 28.3 °C), elevated [CO2] increased vegetative and reproductive growth, including seed yield in all three genotypes. Seed-set was reduced by high temperature in all three genotypes, with the hybrid and IR64 equally affected and twice as sensitive as the tolerant cultivar N22. No interaction occurred between temperature and [CO2] for seed-set. The hybrid had significantly more anthesed spikelets at all temperatures than IR64 and at 29 °C this resulted in a large yield advantage. At 35 °C (tissue temperature 32.9 °C) the hybrid had a higher seed yield than IR64 due to the higher spikelet number, but at 38 °C (tissue temperature 34–35 °C) there was no yield advantage. Grain gel consistency in the hybrid and IR64 was reduced by high temperatures only at elevated [CO2], while the percentage of broken grains increased from 10% at 29 °C to 35% at 38 °C in the hybrid. It is concluded that seed-set of hybrids is susceptible to short episodes of high temperature during anthesis, but that at intermediate tissue temperatures of 32.9 °C higher spikelet number (yield potential) of the hybrid can compensate to some extent. If the heat tolerance from N22 or other tolerant donors could be transferred into hybrids, yield could be maintained under the higher temperatures predicted with climate change.
Resumo:
Factorial pot experiments were conducted to compare the responses of GA-sensitive and GA-insensitive reduced height (Rht) alleles in wheat for susceptibility to heat and drought stress during booting and anthesis. Grain set (grains/spikelet) of near isogenic lines (NILs) was assessed following three day transfers to controlled environments imposing day temperatures (t) from 20 to 40°C. Transfers were during booting and/or anthesis and pots maintained at field capacity (FC) or had water withheld. Logistic responses (y = c/1+e-b(t -m)) described declining grain set with increasing t, and t5 was that fitted to give a 5% reduction in grain set. Averaged over NIL, t5 for anthesis at FC was 31.7±0.47°C (S.E.M, 26 d.f.). Drought at anthesis reduced t5 by <2°C. Maintaining FC at booting conferred considerable resistance to high temperatures (t5=33.9°C) but booting was particularly heat susceptible without water (t5 =26.5°C). In one background (cv. Mercia), for NILs varying at the Rht-D1 locus, there was progressive reduction in t5 with dwarfing and reduced gibberellic acid (GA) sensitivity (Rht-D1a, tall, 32.7±0.72; Rht-D1b, semi-dwarf, 29.5±0.85; Rht-D1c, severe dwarf, 24.2±0.72). This trend was not evident for the Rht-B1 locus, or for Rht-D1b in an alternative background (Maris Widgeon). The GA-sensitive severe dwarf Rht12 was more heat tolerant (t5=29.4±0.72) than the similarly statured GA-insensitive Rht-D1c. The GA-sensitive, semi-dwarfing Rht8 conferred greater drought tolerance in one experiment. Despite the effects of Rht-D1 alleles in Mercia on stress tolerance, the inconsistency of the effects over background and locus led to the conclusion that semi-dwarfing with GA-insensitivity did not necessarily increase sensitivity to stress at booting and flowering. In comparison to effects of semi-dwarfing alleles, responses to heat stress are much more dramatically affected by water availability and the precise growth stage at which the stress is experienced by the plants.
Resumo:
The hysteretic behavior of mechanically alloyed nanocomposites FeCo + MnO was studied at high temperatures. These composites present an unusual high and thermally stable coercivity, compared to FeCo milled at equal conditions. Coercivity enhancement was observed in hysteresis loops obtained between room temperature and 750 K. It is attributed to the isolation of the FeCo ferromagnetic particles by the paramagnetic MnO (T(N) = 120 K). The M(rev)(M(irr))(H) curves are clearly linear for the composite, indicating that coherent rotation is the reversal mechanism in these materials. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The metastable phase diagram of the BCC-based ordering equilibria in the Fe-Al-Mo system has been calculated via a truncated cluster expansion, through the combination of Full-Potential-Linear augmented Plane Wave (FP-LAPW) electronic structure calculations and of Cluster Variation Method (CVM) thermodynamic calculations in the irregular tetrahedron approximation. Four isothermal sections at 1750 K, 2000 K, 2250 K and 2500 K are calculated and correlated with recently published experimental data on the system. The results confirm that the critical temperature for the order-disorder equilibrium between Fe(3)Al-D0(3) and FeAl-B2 is increased by Mo additions, while the critical temperature for the FeAl-B2/A2 equilibrium is kept approximately invariant with increasing Mo contents. The stabilization of the Al-rich A2 phase in equilibrium with overstoichiometric B2-(Fe,Mo)Al is also consistent with the attribution of the A2 structure to the tau(2) phase, stable at high temperatures in overstoichiometric B2-FeAl. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
New petrologic, thermobarometric and U-Pb monazite geochronologic information allowed to resolve the metamorphic evolution of a high temperature mid-crustal segment of an ancient subduction-related orogen. The EI Portezuelo Metamorphic-Igneous Complex, in the northern Sierras Pampeanas, is mainly composed of migmatites that evolved from amphibolite to granulite metamorphic facies, reaching thermal peak conditions of 670-820 degrees C and 4.5-5.3 kbar. The petrographic study combined with conventional and pseudosection thermobarometry led to deducing a short prograde metamorphic evolution within migmatite blocks. The garnet-absent migmatites represent amphibolite-facies rocks, whereas the cordierite-garnet-K-feldspar-sillimanite migmatites represent higher metamorphic grade rocks. U-Pb geochronology on monazite grains within leucosome record the time of migmatization between approximate to 477 and 470 Ma. Thus, the El Portezuelo Metamorphic-Igneous Complex is an example of exhumed Early Ordovician anatectic middle crust of the Famatinian mobile belt. Homogeneous exposure of similar paleo-depths throughout the Famatinian back-arc and isobaric cooling paths suggest slow exhumation and consequent longstanding crustal residence at high temperatures. High thermal gradients uniformly distributed in the Famatinian back-arc can be explained by shallow convection of a low-viscosity asthenosphere promoted by subducting-slab dehydration. (C) 2011 Elsevier Ltd. All rights reserved.