999 resultados para Metal trade


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Market-based environmental regulation is becoming increasingly common within international and national frameworks. Environmental offset and trading regimes are part of the market-based instrument revolution. This paper proposes that environmental market mechanisms could be used to introduce an ethic of land holder responsibility. In order for market based regimes to attract sufficient levels of stakeholder engagement, participants within such scheme require an incentive to participate and furthermore need to feel a sense of security about investing in such processes. A sense of security is often associated with property based interests. This paper explores the property related issues connected with environmental offset and trading scheme initiatives. Relevant property-related considerations include land tenure considerations, public versus private management of land choices, characteristics and powers associated with property interests, theories defining property and the recognition of legal proprietal interests. The Biodiversity Banking Scheme in New South Wales is then examined as a case study followed by a critique on the role of environmental markets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This essay explores the political significance of Balinese death/thrash fandom. In the early 1990s, the emergence of a death/thrash scene in Bali paralleled growing criticism of accelerated tourism development on the island. Specifically, locals protested the increasing ubiquity of Jakarta, 'the centre', cast as threatening to an authentically 'low', peripheral Balinese culture. Similarly, death/thrash enthusiasts also gravitated toward certain fringes, although they rejected dominant notions of Balinese-ness by gesturing elsewhere, toward a global scene. The essay explores the ways in which death/thrash enthusiasts engaged with local discourses by coveting their marginality, and aims to demonstrate how their articulations of 'alien-ness' contributed in important ways to a broader regionalism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

All relevant international standards for determining if a metallic rod is flammable in oxygen utilize some form of “promoted ignition” test. In this test, for a given pressure, an overwhelming ignition source is coupled to the end of the test sample and the designation flammable or nonflammable is based upon the amount burned, that is, a burn criteria. It is documented that (1) the initial temperature of the test sample affects the burning of the test sample both (a) in regards to the pressure at which the sample will support burning (threshold pressure) and (b) the rate at which the sample is melted (regression rate of the melting interface); and, (2) the igniter used affects the test sample by heating it adjacent to the igniter as ignition occurs. Together, these facts make it necessary to ensure, if a metallic material is to be considered flammable at the conditions tested, that the burn criteria will exclude any region of the test sample that may have undergone preheating during the ignition process. A two-dimensional theoretical model was developed to describe the transient heat transfer occurring and resultant temperatures produced within this system. Several metals (copper, aluminum, iron, and stainless steel) and ignition promoters (magnesium, aluminum, and Pyrofuze®) were evaluated for a range of oxygen pressures between 0.69 MPa (100 psia) and 34.5 MPa (5,000 psia). A MATLAB® program was utilized to solve the developed model that was validated against (1) a published solution for a similar system and (2) against experimental data obtained during actual tests at the National Aeronautics and Space Administration White Sands Test Facility. The validated model successfully predicts temperatures within the test samples with agreement between model and experiment increasing as test pressure increases and/or distance from the promoter increases. Oxygen pressure and test sample thermal diffusivity were shown to have the largest effect on the results. In all cases evaluated, there is no significant preheating (above about 38°C/100°F) occurring at distances greater than 30 mm (1.18 in.) during the time the ignition source is attached to the test sample. This validates a distance of 30 mm (1.18 in.) above the ignition promoter as a burn length upon which a definition of flammable can be based for inclusion in relevant international standards (that is, burning past this length will always be independent of the ignition event for the ignition promoters considered here. KEYWORDS: promoted ignition, metal combustion, heat conduction, thin fin, promoted combustion, burn length, burn criteria, flammability, igniter effects, heat affected zone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In conventional fabrication of ceramic separation membranes, the particulate sols are applied onto porous supports. Major structural deficiencies under this approach are pin-holes and cracks, and the dramatic losses of flux when pore sizes are reduced to enhance selectivity. We have overcome these structural deficiencies by constructing hierarchically structured separation layer on a porous substrate using lager titanate nanofibers and smaller boehmite nanofibers. This yields a radical change in membrane texture. The resulting membranes effectively filter out species larger than 60 nm at flow rates orders of magnitude greater than conventional membranes. This reveals a new direction in membrane fabrication.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ceramic membranes were fabricated by in situ synthesis of alumina nanofibres in the pores of an alumina support as a separation layer, and exhibited a high permeation selectivity for bovine serum albumin relative to bovine hemoglobin (over 60 times) and can effectively retain DNA molecules at high fluxes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traditional ceramic separation membranes, which are fabricated by applying colloidal suspensions of metal hydroxides to porous supports, tend to suffer from pinholes and cracks that seriously affect their quality. Other intrinsic problems for these membranes include dramatic losses of flux when the pore sizes are reduced to enhance selectivity and dead-end pores that make no contribution to filtration. In this work, we propose a new strategy for addressing these problems by constructing a hierarchically structured separation layer on a porous substrate using large titanate nanofibers and smaller boehmite nanofibers. The nanofibers are able to divide large voids into smaller ones without forming dead-end pores and with the minimum reduction of the total void volume. The separation layer of nanofibers has a porosity of over 70% of its volume, whereas the separation layer in conventional ceramic membranes has a porosity below 36% and inevitably includes dead-end pores that make no contribution to the flux. This radical change in membrane texture greatly enhances membrane performance. The resulting membranes were able to filter out 95.3% of 60-nm particles from a 0.01 wt % latex while maintaining a relatively high flux of between 800 and 1000 L/m2·h, under a low driving pressure (20 kPa). Such flow rates are orders of magnitude greater than those of conventional membranes with equal selectivity. Moreover, the flux was stable at approximately 800 L/m2·h with a selectivity of more than 95%, even after six repeated runs of filtration and calcination. Use of different supports, either porous glass or porous alumina, had no substantial effect on the performance of the membranes; thus, it is possible to construct the membranes from a variety of supports without compromising functionality. The Darcy equation satisfactorily describes the correlation between the filtration flux and the structural parameters of the new membranes. The assembly of nanofiber meshes to combine high flux with excellent selectivity is an exciting new direction in membrane fabrication.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The importance of agriculture in many countries has tended to reduce as their economies move from a resource base to a manufacturing industry base. Although the level of agricultural production in first world countries has increased over the past two decades, this increase has generally been at a less significant rate compared to other sectors of the economies. Despite this increase in secondary and high technology industries, developed countries have continued to encourage and support their agricultural industries. This support has been through both tariffs and price support. Following pressure from developing economies, particularly through the World Trade Organisation (WTO), GATT Uruguay round and the Cairns Group Developed countries are now in various stages of winding back or de-coupling agricultural support within their economies. A major concern of farmers in protected agricultural markets is the impact of a free market trade in agricultural commodities on farm incomes and land values. This paper will analyse the capital and income performance of the NSW rural land market over the period 1990-1999. This analysis will be based on land use and will compare the total return from rural properties based on world agricultural commodity prices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ceramic membranes are of particular interest in many industrial processes due to their ability to function under extreme conditions while maintaining their chemical and thermal stability. Major structural deficiencies under conventional fabrication approach are pin-holes and cracks, and the dramatic losses of flux when pore sizes are reduced to enhance selectivity. We overcome these structural deficiencies by constructing hierarchically structured separation layer on a porous substrate using larger titanate nanofibres and smaller boehmite nanofibres. This yields a radical change in membrane texture. The differences in the porous supports have no substantial influences on the texture of resulting membranes. The membranes with top layer of nanofibres coated on different porous supports by spin-coating method have similar size of the filtration pores, which is in a range of 10–100 nm. These membranes are able to effectively filter out species larger than 60 nm at flow rates orders of magnitude greater than conventional membranes. The retention can attain more than 95%, while maintaining a high flux rate about 900 L m-2 h. The calcination after spin-coating creates solid linkages between the fibres and between fibres and substrate, in addition to convert boehmite into -alumina nanofibres. This reveals a new direction in membrane fabrication.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Titanate nanofibers with two formulas, Na2Ti3O7 and Na1.5H0.5Ti3O7, respectively, exhibit ideal properties for removal of radioactive and heavy metal ions in wastewater, such as Sr2+ , Ba2+ (as substitute of 226Ra2+), and Pb2+ ions. These nanofibers can be fabricated readily by a reaction between titania and caustic soda and have structures in which TiO6 octahedra join each other to form layers with negative charges; the sodium cations exist within the interlayer regions and are exchangeable. They can selectively adsorb the bivalent radioactive ions and heavy metal ions from water through ion exchange process. More importantly, such sorption finally induces considerable deformation of the layer structure, resulting in permanent entrapment of the toxic bivalent cations in the fibers so that the toxic ions can be safely deposited. This study highlights that nanoparticles of inorganic ion exchangers with layered structure are potential materials for efficient removal of the toxic ions from contaminated water.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Organometallic porphyrins with a metal, metalloid or phosphorus fragment directly attached to their carbon framework emerged for the first time in 1976, and these macrocycles have been intensively investigated in the past decade. The present review summarises for the first time all reported examples as well as applications of these systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bob Baxt, the third Chairman of the Trade Practices Commission, served for a single three year term from 1988 to 1991. He followed Bob McComas, who had deliberately adopted a non-litigious approach to preserving the competitive process, believing that he understood business as an insider and that much of what it did was not anti-competitive, when correctly viewed. Baxt was far more pro-active in his approach, and more closely aligned with that of the first Chairman, Ron Bannerman. Baxt sought to push the frontiers of investigation and precedent, and perhaps, more significantly, sought to influence his Ministers, the government, public servants and public opinion about the need to expand the coverage of the Trade Practices Act, increase penalties and properly resource the Commission so that it could perform its assigned roles. This article examines Baxt’s early and on-going role in teaching Australian students and professionals through his interdisciplinary Trade Practices Workshops, the political context of Baxt’s tenure, including his relations with the Attorney-General ,Michael Duffy, and his skilful handling of the Queensland Wire case.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The New Zealand creative sector was responsible for almost 121,000 jobs at the time of the 2006 Census (6.3% of total employment). These are divided between • 35,751 creative specialists – persons employed doing creative work in creative industries • 42,300 support workers - persons providing management and support services in creative industries • 42,792 embedded creative workers – persons engaged in creative work in other types of enterprise The most striking feature of this breakdown is the fact that the largest group of creative workers are employed outside the creative industries, i.e. in other types of businesses. Even within the creative industries, there are fewer people directly engaged in creative work than in providing management and support. Creative sector employees earned incomes of approximately $52,000 per annum at the time of the 2006 Census. This is relatively uniform across all three types of creative worker, and is significantly above the average for all employed persons (of approximately $40,700). Creative employment and incomes were growing strongly over both five year periods between the 1996, 2001 and 2006 Censuses. However, when we compare creative and general trends, we see two distinct phases in the development of the creative sector: • rapid structural growth over the five years to 2001 (especially led by developments in ICT), with creative employment and incomes increasing rapidly at a time when they were growing modestly across the whole economy; • subsequent consolidation, with growth driven by more by national economic expansion than structural change, and creative employment and incomes moving in parallel with strong economy-wide growth. Other important trends revealed by the data are that • the strongest growth during the decade was in embedded creative workers, especially over the first five years. The weakest growth was in creative specialists, with support workers in creative industries in the middle rank, • by far the strongest growth in creative industries’ employment was in Software & digital content, which trebled in size over the decade Comparing New Zealand with the United Kingdom and Australia, the two southern hemisphere nations have significantly lower proportions of total employment in the creative sector (both in creative industries and embedded employment). New Zealand’s and Australia’s creative shares in 2001 were similar (5.4% each), but in the following five years, our share has expanded (to 5.7%) whereas Australia’s fell slightly (to 5.2%) – in both cases, through changes in creative industries’ employment. The creative industries generated $10.5 billion in total gross output in the March 2006 year. Resulting from this was value added totalling $5.1b, representing 3.3% of New Zealand’s total GDP. Overall, value added in the creative industries represents 49% of industry gross output, which is higher than the average across the whole economy, 45%. This is a reflection of the relatively high labour intensity and high earnings of the creative industries. Industries which have an above-average ratio of value added to gross output are usually labour-intensive, especially when wages and salaries are above average. This is true for Software & Digital Content and Architecture, Design & Visual Arts, with ratios of 60.4% and 55.2% respectively. However there is significant variation in this ratio between different parts of the creative industries, with some parts (e.g. Software & Digital Content and Architecture, Design & Visual Arts) generating even higher value added relative to output, and others (e.g. TV & Radio, Publishing and Music & Performing Arts) less, because of high capital intensity and import content. When we take into account the impact of the creative industries’ demand for goods and services from its suppliers and consumption spending from incomes earned, we estimate that there is an addition to economic activity of: • $30.9 billion in gross output, $41.4b in total • $15.1b in value added, $20.3b in total • 158,100 people employed, 234,600 in total The total economic impact of the creative industries is approximately four times their direct output and value added, and three times their direct employment. Their effect on output and value added is roughly in line with the average over all industries, although the effect on employment is significantly lower. This is because of the relatively high labour intensity (and high earnings) of the creative industries, which generate below-average demand from suppliers, but normal levels of demand though expenditure from incomes. Drawing on these numbers and conclusions, we suggest some (slightly speculative) directions for future research. The goal is to better understand the contribution the creative sector makes to productivity growth; in particular, the distinctive contributions from creative firms and embedded creative workers. The ideas for future research can be organised into the several categories: • Understanding the categories of the creative sector– who is doing the business? In other words, examine via more fine grained research (at a firm level perhaps) just what is the creative contribution from the different aspects of the creative sector industries. It may be possible to categorise these in terms of more or less striking innovations. • Investigate the relationship between the characteristics and the performance of the various creative industries/ sectors; • Look more closely at innovation at an industry level e.g. using an index of relative growth of exports, and see if this can be related to intensity of use of creative inputs; • Undertake case studies of the creative sector; • Undertake case studies of the embedded contribution to growth in the firms and industries that employ them, by examining taking several high performing noncreative industries (in the same way as proposed for the creative sector). • Look at the aggregates – drawing on the broad picture of the extent of the numbers of creative workers embedded within the different industries, consider the extent to which these might explain aspects of the industries’ varied performance in terms of exports, growth and so on. • This might be able to extended to examine issues like the type of creative workers that are most effective when embedded, or test the hypothesis that each industry has its own particular requirements for embedded creative workers that overwhelms any generic contributions from say design, or IT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transition metal oxides are functional materials that have advanced applications in many areas, because of their diverse properties (optical, electrical, magnetic, etc.), hardness, thermal stability and chemical resistance. Novel applications of the nanostructures of these oxides are attracting significant interest as new synthesis methods are developed and new structures are reported. Hydrothermal synthesis is an effective process to prepare various delicate structures of metal oxides on the scales from a few to tens of nanometres, specifically, the highly dispersed intermediate structures which are hardly obtained through pyro-synthesis. In this thesis, a range of new metal oxide (stable and metastable titanate, niobate) nanostructures, namely nanotubes and nanofibres, were synthesised via a hydrothermal process. Further structure modifications were conducted and potential applications in catalysis, photocatalysis, adsorption and construction of ceramic membrane were studied. The morphology evolution during the hydrothermal reaction between Nb2O5 particles and concentrated NaOH was monitored. The study demonstrates that by optimising the reaction parameters (temperature, amount of reactants), one can obtain a variety of nanostructured solids, from intermediate phases niobate bars and fibres to the stable phase cubes. Trititanate (Na2Ti3O7) nanofibres and nanotubes were obtained by the hydrothermal reaction between TiO2 powders or a titanium compound (e.g. TiOSO4·xH2O) and concentrated NaOH solution by controlling the reaction temperature and NaOH concentration. The trititanate possesses a layered structure, and the Na ions that exist between the negative charged titanate layers are exchangeable with other metal ions or H+ ions. The ion-exchange has crucial influence on the phase transition of the exchanged products. The exchange of the sodium ions in the titanate with H+ ions yields protonated titanate (H-titanate) and subsequent phase transformation of the H-titanate enable various TiO2 structures with retained morphology. H-titanate, either nanofibres or tubes, can be converted to pure TiO2(B), pure anatase, mixed TiO2(B) and anatase phases by controlled calcination and by a two-step process of acid-treatment and subsequent calcination. While the controlled calcination of the sodium titanate yield new titanate structures (metastable titanate with formula Na1.5H0.5Ti3O7, with retained fibril morphology) that can be used for removal of radioactive ions and heavy metal ions from water. The structures and morphologies of the metal oxides were characterised by advanced techniques. Titania nanofibres of mixed anatase and TiO2(B) phases, pure anatase and pure TiO2(B) were obtained by calcining H-titanate nanofibres at different temperatures between 300 and 700 °C. The fibril morphology was retained after calcination, which is suitable for transmission electron microscopy (TEM) analysis. It has been found by TEM analysis that in mixed-phase structure the interfaces between anatase and TiO2(B) phases are not random contacts between the engaged crystals of the two phases, but form from the well matched lattice planes of the two phases. For instance, (101) planes in anatase and (101) planes of TiO2(B) are similar in d spaces (~0.18 nm), and they join together to form a stable interface. The interfaces between the two phases act as an one-way valve that permit the transfer of photogenerated charge from anatase to TiO2(B). This reduces the recombination of photogenerated electrons and holes in anatase, enhancing the activity for photocatalytic oxidation. Therefore, the mixed-phase nanofibres exhibited higher photocatalytic activity for degradation of sulforhodamine B (SRB) dye under ultraviolet (UV) light than the nanofibres of either pure phase alone, or the mechanical mixtures (which have no interfaces) of the two pure phase nanofibres with a similar phase composition. This verifies the theory that the difference between the conduction band edges of the two phases may result in charge transfer from one phase to the other, which results in effectively the photogenerated charge separation and thus facilitates the redox reaction involving these charges. Such an interface structure facilitates charge transfer crossing the interfaces. The knowledge acquired in this study is important not only for design of efficient TiO2 photocatalysts but also for understanding the photocatalysis process. Moreover, the fibril titania photocatalysts are of great advantage when they are separated from a liquid for reuse by filtration, sedimentation, or centrifugation, compared to nanoparticles of the same scale. The surface structure of TiO2 also plays a significant role in catalysis and photocatalysis. Four types of large surface area TiO2 nanotubes with different phase compositions (labelled as NTA, NTBA, NTMA and NTM) were synthesised from calcination and acid treatment of the H-titanate nanotubes. Using the in situ FTIR emission spectrescopy (IES), desorption and re-adsorption process of surface OH-groups on oxide surface can be trailed. In this work, the surface OH-group regeneration ability of the TiO2 nanotubes was investigated. The ability of the four samples distinctively different, having the order: NTA > NTBA > NTMA > NTM. The same order was observed for the catalytic when the samples served as photocatalysts for the decomposition of synthetic dye SRB under UV light, as the supports of gold (Au) catalysts (where gold particles were loaded by a colloid-based method) for photodecomposition of formaldehyde under visible light and for catalytic oxidation of CO at low temperatures. Therefore, the ability of TiO2 nanotubes to generate surface OH-groups is an indicator of the catalytic activity. The reason behind the correlation is that the oxygen vacancies at bridging O2- sites of TiO2 surface can generate surface OH-groups and these groups facilitate adsorption and activation of O2 molecules, which is the key step of the oxidation reactions. The structure of the oxygen vacancies at bridging O2- sites is proposed. Also a new mechanism for the photocatalytic formaldehyde decomposition with the Au-TiO2 catalysts is proposed: The visible light absorbed by the gold nanoparticles, due to surface plasmon resonance effect, induces transition of the 6sp electrons of gold to high energy levels. These energetic electrons can migrate to the conduction band of TiO2 and are seized by oxygen molecules. Meanwhile, the gold nanoparticles capture electrons from the formaldehyde molecules adsorbed on them because of gold’s high electronegativity. O2 adsorbed on the TiO2 supports surface are the major electron acceptor. The more O2 adsorbed, the higher the oxidation activity of the photocatalyst will exhibit. The last part of this thesis demonstrates two innovative applications of the titanate nanostructures. Firstly, trititanate and metastable titanate (Na1.5H0.5Ti3O7) nanofibres are used as intelligent absorbents for removal of radioactive cations and heavy metal ions, utilizing the properties of the ion exchange ability, deformable layered structure, and fibril morphology. Environmental contamination with radioactive ions and heavy metal ions can cause a serious threat to the health of a large part of the population. Treatment of the wastes is needed to produce a waste product suitable for long-term storage and disposal. The ion-exchange ability of layered titanate structure permitted adsorption of bivalence toxic cations (Sr2+, Ra2+, Pb2+) from aqueous solution. More importantly, the adsorption is irreversible, due to the deformation of the structure induced by the strong interaction between the adsorbed bivalent cations and negatively charged TiO6 octahedra, and results in permanent entrapment of the toxic bivalent cations in the fibres so that the toxic ions can be safely deposited. Compared to conventional clay and zeolite sorbents, the fibril absorbents are of great advantage as they can be readily dispersed into and separated from a liquid. Secondly, new generation membranes were constructed by using large titanate and small ã-alumina nanofibres as intermediate and top layers, respectively, on a porous alumina substrate via a spin-coating process. Compared to conventional ceramic membranes constructed by spherical particles, the ceramic membrane constructed by the fibres permits high flux because of the large porosity of their separation layers. The voids in the separation layer determine the selectivity and flux of a separation membrane. When the sizes of the voids are similar (which means a similar selectivity of the separation layer), the flux passing through the membrane increases with the volume of the voids which are filtration passages. For the ideal and simplest texture, a mesh constructed with the nanofibres 10 nm thick and having a uniform pore size of 60 nm, the porosity is greater than 73.5 %. In contrast, the porosity of the separation layer that possesses the same pore size but is constructed with metal oxide spherical particles, as in conventional ceramic membranes, is 36% or less. The membrane constructed by titanate nanofibres and a layer of randomly oriented alumina nanofibres was able to filter out 96.8% of latex spheres of 60 nm size, while maintaining a high flux rate between 600 and 900 Lm–2 h–1, more than 15 times higher than the conventional membrane reported in the most recent study.