981 resultados para Metal cutting
Resumo:
Superhydrophobic “lotus effect” materials are typically not sufficiently robust for most real world applications because their small surface features are both easily damaged and vulnerable to fouling. Here, a method for preparing a new type of superhydrophobic (? > 162°) composite material by compression of superhydrophobic metal particles is reported. This material, which has no natural analogue, has low-surface-energy microstructures extending throughout its whole volume. Removing its outer layer by abrasion or cutting deep into it does not result in loss of superhydrophobicity because it merely exposes a fresh portion of the underlying superhydrophobic material. The high contact angle is therefore retained even after accidental damage, and vigorous abrasion can be used to restore hydrophobicity after fouling.
Resumo:
This document presents particular description of work done during student’s internship in PR Metal company realized as ERASMUS PROJECT at ISEP. All information including company’s description and its structure, overview of the problems and analyzed cases, all stages of projects from concept to conclusion can be found here. Description of work done during the internship is divided here into two pieces. First part concerns one activities of the company which is robotic chefs (kitchen robot) production line. Work, that was done for development of this line involved several tasks, among them: creating a single-worker montage station for screwing robots housing’s parts, improve security system for laser welding chamber, what particularly consists in designing automatically closing door system with special surface, that protects against destructive action of laser beam, test station for examination of durability of heating connectors, solving problem with rotors vibrations. Second part tells about main task, realized in second half of internship and stands a complete description of machine development and design. The machine is a part of car handle latch cable production line and its tasks are: cutting cable to required length and hot-forming plastic cover for further assembly needs.
Resumo:
Throughout the industrial processes of sheet metal manufacturing and refining, shear cutting is widely used for its speed and cost advantages over competing cutting methods. Industrial shears may include some force measurement possibilities, but the force is most likely influenced by friction losses between shear tool and the point of measurement, and are in general not showing the actual force applied to the sheet. Well defined shears and accurate measurements of force and shear tool position are important for understanding the influence of shear parameters. Accurate experimental data are also necessary for calibration of numerical shear models. Here, a dedicated laboratory set-up with well defined geometry and movement in the shear, and high measurability in terms of force and geometry is designed, built and verified. Parameters important to the shear process are studied with perturbation analysis techniques and requirements on input parameter accuracy are formulated to meet experimental output demands. Input parameters in shearing are mostly geometric parameters, but also material properties and contact conditions. Based on the accuracy requirements, a symmetric experiment with internal balancing of forces is constructed to avoid guides and corresponding friction losses. Finally, the experimental procedure is validated through shearing of a medium grade steel. With the obtained experimental set-up performance, force changes as result of changes in studied input parameters are distinguishable down to a level of 1%.
Resumo:
This work focuses on the creation and applications of a dynamic simulation software in order to study the hard metal structure (WC-Co). The technological ground used to increase the GPU hardware capacity was Geforce 9600 GT along with the PhysX chip created to make games more realistic. The software simulates the three-dimensional carbide structure to the shape of a cubic box where tungsten carbide (WC) are modeled as triangular prisms and truncated triangular prisms. The program was proven effective regarding checking testes, ranging from calculations of parameter measures such as the capacity to increase the number of particles simulated dynamically. It was possible to make an investigation of both the mean parameters and distributions stereological parameters used to characterize the carbide structure through cutting plans. Grounded on the cutting plans concerning the analyzed structures, we have investigated the linear intercepts, the intercepts to the area, and the perimeter section of the intercepted grains as well as the binder phase to the structure by calculating the mean value and distribution of the free path. As literature shows almost consensually that the distribution of the linear intercepts is lognormal, this suggests that the grain distribution is also lognormal. Thus, a routine was developed regarding the program which made possible a more detailed research on this issue. We have observed that it is possible, under certain values for the parameters which define the shape and size of the Prismatic grain to find out the distribution to the linear intercepts that approach the lognormal shape. Regarding a number of developed simulations, we have observed that the distribution curves of the linear and area intercepts as well as the perimeter section are consistent with studies on static computer simulation to these parameters.
Resumo:
This work presents the results, analyses and conclusions about a study carried out with objective of minimizing the thermal cracks formation on cemented carbide inserts during face milling. The main focus of investigation was based on the observation that milling process is an interrupted machining process, which imposes cyclic thermal loads to the cutting tool, causing frequent stresses changes in its superficial and sub-superficial layers. These characteristics cause the formation of perpendicular cracks from cutting edge which aid the cutting tool wear, reducing its life. Several works on this subject emphasizing the thermal cyclic behavior imposed by the milling process as the main responsible for thermal cracks formation have been published. In these cases, the phenomenon appears as a consequence of the difference in temperature experienced by the cutting tool with each rotation of the cutter, usually defined as the difference between the temperatures in the cutting tool wedge at the end of the cutting and idle periods (T factor). Thus, a technique to minimize this cyclic behavior with objective of transforming the milling in an almost-continuous process in terms of temperature was proposed. In this case, a hot air stream was applied into the idle period, during the machining process. This procedure aimed to minimize the T factor. This technique was applied using three values of temperature from the hot air stream (100, 350 e 580 oC) with no cutting fluid (dry condition) and with cutting fluid mist (wet condition) using the hot air stream at 580oC. Besides, trials at room temperature were carried out. Afterwards the inserts were analyzed using a scanning electron microscope, where the quantity of thermal cracks generated in each condition, the wear and others damages was analyzed. In a general way, it was found that the heating of the idle period was positive for reducing the number of thermal cracks during face milling with cemented carbide inserts. Further, the cutting fluid mist application was effective in reducing the wear of the cutting tools.
Resumo:
Purpose: This study used bovine ribs to comparatively assess the deformation, roughness, and mass loss for 3 different types of surface treatments with burs, used in osteotomies, for the installation of osseointegrated implants.Materials and Methods: The study used 25 bovine ribs and 3 types of helical burs (2.0 mm and 3.0 mm) for osteotomies during implant placement (a steel bur [G1], a bur with tungsten carbide film coating in a carbon matrix [G2], and a zirconia bur [G3]), which were subdivided into 5 subgroups: 1, 2, 3, 4, and 5, corresponding to 0, 10, 20, 30, and 40 perforations, respectively. The surface roughness (mean roughness [Ra], partial roughness, and maximum roughness) and mass (in grams) of all the burs were measured, and the burs were analyzed in a scanning electron microscope before and after use. Data were tabulated and statistically analyzed by use of the Kruskal-Wallis test, and when a statistically significant difference was found, the Dunn test was used.Results: There was a loss of mass in all groups (G1, G2, and G3), and this loss was gradual, according to the number of perforations made (1, 2, 3, 4, and 5). However, this difference was not statistically significant (P < .05). Regarding the roughness, G3 presented an increase in Ra, partial roughness, and maximum roughness (P < .05) compared with G2 and an increase in Ra compared with G1. There was no statistically significant difference (P > .05) between G1 and G2. The scanning electron microscopy analysis found areas of deformation in all the 2.0-mm samples, with loss of substrates, and this characteristic was more frequent in G3.Conclusions: The 2.0-mm zirconia burs had a greater loss of substrates and abrasive wear in the cutting area. They also presented an increased roughness when compared with the steel and the tungsten carbide coating film in carbon matrix. There was no statistically significant difference (P < .05) between G1 and G2 in any mechanical test carried out. (C) 2012 American Association of Oral and Maxillofacial Surgeons J Oral Maxillofac Surg 70:e608-e621, 2012
Resumo:
There has been a great interest for improving the machining of cast iron materials in the automotive and other industries. Comparative studies for tool used to machine grey cast iron (CI) and compacted graphite iron (CGI) on dry machining were also performed in order to find out why in this case the tool lifetime is not significantly higher. However the machining these materials while considering turning with the traditional high-speed steel and carbide cutting tools present any disadvantages. One of these disadvantages is that all the traditional machining processes involve the cooling fluid to remove the heat generated on workpiece due to friction during cutting. This paper present a new generation of ceramic cutting tool exhibiting improved properties and important advances in machining CI and CGI. The tool performance was analyzed in function of flank wear, temperature and roughness, while can be observed that main effects were found for tool wear, were abrasion to CI and inter-diffusion of constituting elements between tool and CGI, causing crater. However the difference in tool lifetime can be explained by the formation of a MnS layer on the tool surface in the case of grey CI. This layer is missing in the case of CGI.
Resumo:
Silicon nitride cutting tools have been used successfully for machining hard materials, like: cast irons, nickel based alloys, etc. However these cutting tools with diamond coating present little information on dry turning operations of gray cast iron. In the present work, Si3N4 square inserts was developed, characterized and subsequently coated with diamond for dry machining operations on gray cast iron. All experiments were conducted with replica. It was used a 1500, 3000, 4500 m cutting length, feed rate of 0.33 mm/rev and keeping the depth of cut constant and equal to 1 mm. The results show that wear in the tool tips of the Si3N4 inserts, in all cutting conditions, was caused by both mechanical and chemical processes. To understand the tool wear mechanisms, a morphological analysis of the inserts, after experiments, has been performed by SEM and optical microscopy. Diamond coated PVD inserts showed to be capable to reach large cutting lengths when machining gray cast iron. © (2010) Trans Tech Publications.
Resumo:
Advanced ceramic materials constitute a mature technology with a very broad base of current and potential applications and a growing list of material compositions. Within the advanced ceramics category, silicon nitride based ceramics are wear-resistant, corrosion-resistant and lightweight materials, and are superior to many materials with regard to stability in high-temperature environments. Because of this combination the silicon nitride ceramics have an especially high potential to resolve a wide number of machining problems in the industries. Presently the Si3N4 ceramic cutting tool inserts are developed using additives powders that are pressed and sintered in the form of a cutting tool insert at a temperature of 1850 °C using pressureless sintering. The microstructure of the material was observed and analyzed using XRD, SEM, and the mechanical response of this array microstructure was characterized for hardness Vickers and fracture toughness. The results show that Si3N4/20 wt.% (AlN and Y 2O3) gives the best balance between hardness Vickers and fracture toughness. The Si3N4/15 wt.% (AlN and Y 2O3) composition allows the production of a very fine-grained microstructure with low decreasing of the fracture toughness and increased hardness Vickers. These ceramic cutting tools present adequate characteristics for future application on dry machining. © (2010) Trans Tech Publications.
Resumo:
This paper presents a new method to estimate hole diameters and surface roughness in precision drilling processes, using coupons taken from a sandwich plate composed of a titanium alloy plate (Ti6Al4V) glued onto an aluminum alloy plate (AA 2024T3). The proposed method uses signals acquired during the cutting process by a multisensor system installed on the machine tool. These signals are mathematically treated and then used as input for an artificial neural network. After training, the neural network system is qualified to estimate the surface roughness and hole diameter based on the signals and cutting process parameters. To evaluate the system, the estimated data were compared with experimental measurements and the errors were calculated. The results proved the efficiency of the proposed method, which yielded very low or even negligible errors of the tolerances used in most industrial drilling processes. This pioneering method opens up a new field of research, showing a promising potential for development and application as an alternative monitoring method for drilling processes. © 2012 Springer-Verlag London Limited.
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Pós-graduação em Engenharia Mecânica - FEB
Resumo:
We deal with the optimization of the production of branched sheet metal products. New forming techniques for sheet metal give rise to a wide variety of possible profiles and possible ways of production. In particular, we show how the problem of producing a given profile geometry can be modeled as a discrete optimization problem. We provide a theoretical analysis of the model in order to improve its solution time. In this context we give the complete convex hull description of some substructures of the underlying polyhedron. Moreover, we introduce a new class of facet-defining inequalities that represent connectivity constraints for the profile and show how these inequalities can be separated in polynomial time. Finally, we present numerical results for various test instances, both real-world and academic examples.
Resumo:
A metal-less RXI collimator has been designed. Unlike to the conventional RXI collimators, whose back surface and central part of the front surface have to be metalized, this collimator does not include any mirrored surface. The back surface is designed as a grooved surface providing two TIR reflections for all rays impinging on it. The main advantage of the presented design is lower manufacturing cost since there is no need for the expensive process of metalization. Also, unlike to the conventional RXI collimators this design performs good colour mixing. The first prototype of V-groove RXI collimator has been made of PMMA by direct cutting using a five axis diamond turning machine. The experimental measurements of the first prototype are presented.