889 resultados para Message Authentication Code
Resumo:
Radio advertising is suffering from a remarkable crisis of creativity as it has yet not found its role in a radio model based on voice locution and information genres. This article suggests the need for implementing a peripheral or heuristic strategy to attract and hold listeners’ attention. Within this framework, the narration and scene representation are proposed as suitable persuasion techniques. The objective is to design a useful conceptual tool for an efficient creative conception of narration at the service of certain commercial strategy. First, the concept of narrative persuasion is grounded according to the possibilities of the sound code. Second, the keys of scene representation and commercial strategy (brand, product, advantage, benefit and target) within the sound message are presented. And third, these keys are articulated in a model. This model is pre-tested by means of analyzing eight different case-radio ads.
Resumo:
In this paper the construction of Reed-Solomon RS(255,239) codeword is described and the process of coding and decoding a message is simulated and verified. RS(255,239), or its shortened version RS(224,208) is used as a coding technique in Low-Power Single Carrier (LPSC) physical layer, as described in IEEE 802.11ad standard. The encoder takes 239 8-bit information symbols, adds 16 parity symbols and constructs 255-byte codeword to be transmitted through wireless communication channel. RS(255,239) codeword is defined over Galois Field GF and is used for correcting upto 8 symbol errors. RS(255,239) code construction is fully implemented and Simulink test project is constructed for testing and analyzing purposes.
Resumo:
Biometrics deals with the physiological and behavioral characteristics of an individual to establish identity. Fingerprint based authentication is the most advanced biometric authentication technology. The minutiae based fingerprint identification method offer reasonable identification rate. The feature minutiae map consists of about 70-100 minutia points and matching accuracy is dropping down while the size of database is growing up. Hence it is inevitable to make the size of the fingerprint feature code to be as smaller as possible so that identification may be much easier. In this research, a novel global singularity based fingerprint representation is proposed. Fingerprint baseline, which is the line between distal and intermediate phalangeal joint line in the fingerprint, is taken as the reference line. A polygon is formed with the singularities and the fingerprint baseline. The feature vectors are the polygonal angle, sides, area, type and the ridge counts in between the singularities. 100% recognition rate is achieved in this method. The method is compared with the conventional minutiae based recognition method in terms of computation time, receiver operator characteristics (ROC) and the feature vector length. Speech is a behavioural biometric modality and can be used for identification of a speaker. In this work, MFCC of text dependant speeches are computed and clustered using k-means algorithm. A backpropagation based Artificial Neural Network is trained to identify the clustered speech code. The performance of the neural network classifier is compared with the VQ based Euclidean minimum classifier. Biometric systems that use a single modality are usually affected by problems like noisy sensor data, non-universality and/or lack of distinctiveness of the biometric trait, unacceptable error rates, and spoof attacks. Multifinger feature level fusion based fingerprint recognition is developed and the performances are measured in terms of the ROC curve. Score level fusion of fingerprint and speech based recognition system is done and 100% accuracy is achieved for a considerable range of matching threshold
Resumo:
This thesis describes Optimist, an optimizing compiler for the Concurrent Smalltalk language developed by the Concurrent VLSI Architecture Group. Optimist compiles Concurrent Smalltalk to the assembly language of the Message-Driven Processor (MDP). The compiler includes numerous optimization techniques such as dead code elimination, dataflow analysis, constant folding, move elimination, concurrency analysis, duplicate code merging, tail forwarding, use of register variables, as well as various MDP-specific optimizations in the code generator. The MDP presents some unique challenges and opportunities for compilation. Due to the MDP's small memory size, it is critical that the size of the generated code be as small as possible. The MDP is an inherently concurrent processor with efficient mechanisms for sending and receiving messages; the compiler takes advantage of these mechanisms. The MDP's tagged architecture allows very efficient support of object-oriented languages such as Concurrent Smalltalk. The initial goals for the MDP were to have the MDP execute about twenty instructions per method and contain 4096 words of memory. This compiler shows that these goals are too optimistic -- most methods are longer, both in terms of code size and running time. Thus, the memory size of the MDP should be increased.
Resumo:
Mode of access: Internet.
Resumo:
Texas State Department of Highways and Public Transportation, Transportation Planning Division, Austin
Effectiveness of changeable message signs in controlling vehicle speeds in work zones. Final report.
Resumo:
Virginia Department of Transportation, Richmond
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Federal Highway Administration, Washington, D.C.
Resumo:
Statistical physics is employed to evaluate the performance of error-correcting codes in the case of finite message length for an ensemble of Gallager's error correcting codes. We follow Gallager's approach of upper-bounding the average decoding error rate, but invoke the replica method to reproduce the tightest general bound to date, and to improve on the most accurate zero-error noise level threshold reported in the literature. The relation between the methods used and those presented in the information theory literature are explored.
Resumo:
An improved inference method for densely connected systems is presented. The approach is based on passing condensed messages between variables, representing macroscopic averages of microscopic messages. We extend previous work that showed promising results in cases where the solution space is contiguous to cases where fragmentation occurs. We apply the method to the signal detection problem of Code Division Multiple Access (CDMA) for demonstrating its potential. A highly efficient practical algorithm is also derived on the basis of insight gained from the analysis. © EDP Sciences.
Resumo:
The increasing nationwide interest in intelligent transportation systems (ITS) and the need for more efficient transportation have led to the expanding use of variable message sign (VMS) technology. VMS panels are substantially heavier than flat panel aluminum signs and have a larger depth (dimension parallel to the direction of traffic). The additional weight and depth can have a significant effect on the aerodynamic forces and inertial loads transmitted to the support structure. The wind induced drag forces and the response of VMS structures is not well understood. Minimum design requirements for VMS structures are contained in the American Association of State Highway Transportation Officials Standard Specification for Structural Support for Highway Signs, Luminaires, and Traffic Signals (AASHTO Specification). However the Specification does not take into account the prismatic geometry of VMS and the complex interaction of the applied aerodynamic forces to the support structure. In view of the lack of code guidance and the limited number research performed so far, targeted experimentation and large scale testing was conducted at the Florida International University (FIU) Wall of Wind (WOW) to provide reliable drag coefficients and investigate the aerodynamic instability of VMS. A comprehensive range of VMS geometries was tested in turbulence representative of the high frequency end of the spectrum in a simulated suburban atmospheric boundary layer. The mean normal, lateral and vertical lift force coefficients, in addition to the twisting moment coefficient and eccentricity ratio, were determined using the measured data for each model. Wind tunnel testing confirmed that drag on a prismatic VMS is smaller than the 1.7 suggested value in the current AASHTO Specification (2013). An alternative to the AASHTO Specification code value is presented in the form of a design matrix. Testing and analysis also indicated that vortex shedding oscillations and galloping instability could be significant for VMS signs with a large depth ratio attached to a structure with a low natural frequency. The effect of corner modification was investigated by testing models with chamfered and rounded corners. Results demonstrated an additional decrease in the drag coefficient but a possible Reynolds number dependency for the rounded corner configuration.
Resumo:
Unstructured mesh based codes for the modelling of continuum physics phenomena have evolved to provide the facility to model complex interacting systems. Such codes have the potential to provide a high performance on parallel platforms for a small investment in programming. The critical parameters for success are to minimise changes to the code to allow for maintenance while providing high parallel efficiency, scalability to large numbers of processors and portability to a wide range of platforms. The paradigm of domain decomposition with message passing has for some time been demonstrated to provide a high level of efficiency, scalability and portability across shared and distributed memory systems without the need to re-author the code into a new language. This paper addresses these issues in the parallelisation of a complex three dimensional unstructured mesh Finite Volume multiphysics code and discusses the implications of automating the parallelisation process.