905 resultados para Mel frequency cepstrum coefficient (MFCC)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Little is known about the population's exposure to radio frequency electromagnetic fields (RF-EMF) in industrialized countries. OBJECTIVES: To examine levels of exposure and the importance of different RF-EMF sources and settings in a sample of volunteers living in a Swiss city. METHODS: RF-EMF exposure of 166 volunteers from Basel, Switzerland, was measured with personal exposure meters (exposimeters). Participants carried an exposimeter for 1 week (two separate weeks in 32 participants) and completed an activity diary. Mean values were calculated using the robust regression on order statistics (ROS) method. RESULTS: Mean weekly exposure to all RF-EMF sources was 0.13 mW/m(2) (0.22 V/m) (range of individual means 0.014-0.881 mW/m(2)). Exposure was mainly due to mobile phone base stations (32.0%), mobile phone handsets (29.1%) and digital enhanced cordless telecommunications (DECT) phones (22.7%). Persons owning a DECT phone (total mean 0.15 mW/m(2)) or mobile phone (0.14 mW/m(2)) were exposed more than those not owning a DECT or mobile phone (0.10 mW/m(2)). Mean values were highest in trains (1.16 mW/m(2)), airports (0.74 mW/m(2)) and tramways or buses (0.36 mW/m(2)), and higher during daytime (0.16 mW/m(2)) than nighttime (0.08 mW/m(2)). The Spearman correlation coefficient between mean exposure in the first and second week was 0.61. CONCLUSIONS: Exposure to RF-EMF varied considerably between persons and locations but was fairly consistent within persons. Mobile phone handsets, mobile phone base stations and cordless phones were important sources of exposure in urban Switzerland.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND Ultrasonographic appearance of the gastrointestinal (GI) tract of equine neonates has not been completely described. OBJECTIVES To describe (1) sonographic characteristics of the GI segments in normal nonsedated equine neonates, (2) intra- and interobserver variation in wall thickness, and (3) the sonographic appearance of asymptomatic intussusceptions, and (4) to compare age and sonographic findings of foals with and without asymptomatic intussusceptions. ANIMALS Eighteen healthy Standardbred foals ≤5 days of age. METHODS Prospective, cross-sectional blinded study. Gastrointestinal sonograms were performed stall-side. Intraobserver variability in wall thickness measurements was determined by calculating the coefficient of variation (CV). The Bland-Altman method was used to assess interobserver bias. Student's t-test and Fisher's exact test were used to test the association among presence of intussusceptions, age, and selected sonographic findings. RESULTS The reference ranges (95% predictive interval) for wall thickness were 1.6-3.6 mm for the stomach, 1.9-3.2 mm for the duodenum, 1.9-3.1 mm for the jejunum, 1.3-2.2 mm for the colon, and 0.8-2.7 mm for the cecum. Intraobserver wall thickness CV ranged from 8 to 21% for the 2 observers for 5 gastrointestinal segments. The interobserver bias for wall thickness measurements was not significant except for the stomach (0.14 mm, P < .05) and duodenum (0.29 mm, P < .05). Diagnostic images of mural blood flow could not be obtained. Asymptomatic intussusceptions were found in 10/18 neonates. Associations between sonographic variables or age and the presence of intussusceptions were not found. CONCLUSIONS AND CLINICAL IMPORTANCE Sonographic characteristics of the GI tract of normal Standardbred neonates can be useful in evaluating ill foals. Asymptomatic small intestinal intussusceptions occur in normal Standardbred neonates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The first data set contains the mean and cofficient of variation (standard deviation divided by mean) of a multi-frequency indicator I derived from ER60 acoustic information collected at five frequencies (18, 38, 70, 120, and 200 kHz) in the Bay of Biscay in May of the years 2006, 2008, 2009 and 2010 (Pelgas surveys). The multi-frequency indicator was first calculated per voxel (20 m long × 5 m deep sampling unit) and then averaged on a spatial grid (approx. 20 nm × 20 nm) for five 5-m depth layers in the surface waters (10-15m, 15-20m, 20-25m, 25-30m below sea surface); there are missing values in particular in the shallowest layer. The second data set provides for each grid cell and depth layer the proportion of voxels for which the multi-frequency indicator I was indicative of a certain group of organisms. For this the following interpretation was used: I < 0.39 swim bladder fish or large gas bubbles, I = 0.39-0.58 small resonant bubbles present in gas bearing organisms such as larval fish and phytoplankton, I = 0.7-0.8 fluidlike zooplankton such as copepods and euphausiids, and I > 0.8 mackerel. These proportions can be interpreted as a relative abundance index for each of the four organism groups.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Durante los últimos años el flujo de datos en la transmisión que tiene lugar en los sistemas de comunicación ha aumentado considerablemente de forma que día a día se requieren más aplicaciones trabajando en un rango de frecuencias muy alto (3-30 GHz). Muchos de estos sistemas de comunicación incluyen dispositivos de onda acústica superficial (SAW) y por tanto se hace necesario el aumento de frecuencia a la que éstos trabajan. Pero este incremento de frecuencia de los dispositivos SAW no sólo es utilizado en los sistemas de comunicación, varios tipos de sensores, por ejemplo, aumentan su sensibilidad cuando la frecuencia a la que trabajan también lo hace. Tradicionalmente los dispositivos SAW se han fabricado sobre cuarzo, LiNbO3 y LiTaO3 principalmente. Sin embargo la principal limitación de estos materiales es su velocidad SAW. Además, debido a la alta temperatura a la que se depositan no pueden ser integrados en la tecnología de fabricación CMOS. El uso de la tecnología de capa delgada, en la que un material piezoeléctrico es depositado sobre un substrato, se está utilizando en las últimas décadas para incrementar la velocidad SAW de la estructura y poder obtener dispositivos trabajando en el rango de frecuencias requerido en la actualidad. Por otra parte, esta tecnología podría ser integrada en el proceso de fabricación CMOS. Durante esta tesis nos hemos centrado en la fabricación de dispositivos SAW trabajando a muy alta frecuencia. Para ello, utilizando la tecnología de capa delgada, hemos utilizado la estructura nitruro de aluminio (AlN) sobre diamante que permite conseguir velocidades SAW del sustrato que no se pueden alcanzar con otros materiales. El depósito de AlN se realizó mediante sputtering reactivo. Durante esta tesis se han realizado diferentes experimentos para optimizar dicho depósito de forma que se han obtenido los parámetros óptimos para los cuales se pueden obtener capas de AlN de alta calidad sobre cualquier tipo de sustrato. Además todo el proceso se realizó a baja temperatura para que el procesado de estos dispositivos pueda ser compatible con la tecnología CMOS. Una vez optimizada la estructura AlN/diamante, mediante litografía por haz de electrones se fabricaron resonadores SAW de tamaño nanométrico que sumado a la alta velocidad resultante de la combinación AlN/diamante nos ha permitido obtener dispositivos trabajando en el rango de 10-28 GHz con un alto factor de calidad y rechazo fuera de la banda. Estás frecuencias y prestaciones no han sido alcanzadas por el momento en resonadores de este tipo. Por otra parte, se han utilizado estos dispositivos para fabricar sensores de presión de alta sensibilidad. Estos dispositivos son afectados altamente por los cambios de temperatura. Se realizó también un exhaustivo estudio de cómo se comportan en temperatura estos resonadores, entre -250ºC y 250ºC (rango de temperaturas no estudiado hasta el momento) diferenciándose dos regiones una a muy baja temperatura en la que el dispositivo muestra un coeficiente de retraso en frecuencia (TCF) relativamente bajo y otra a partir de los -100ºC en la que el TCF es similar al observado en la bibliografía. Por tanto, durante esta tesis se ha optimizado el depósito de AlN sobre diamante para que sea compatible con la tecnología CMOS y permita el procesado de dispositivos trabajando a muy alta frecuencia con altas prestaciones para comunicaciones y sensores. ABSTRACT The increasing volume of information in data transmission systems results in a growing demand of applications working in the super-high-frequency band (3–30 GHz). Most of these systems work with surface acoustic wave (SAW) devices and thus there is a necessity of increasing their resonance frequency. Moreover, sensor application includes this kind of devices. The sensitivity of them is proportional with its frequency. Traditionally, quartz, LiNbO3 and LiTaO3 have been used in the fabrication of SAW devices. These materials suffer from a variety of limitations and in particular they have low SAW velocity as well as being incompatible with the CMOS technology. In order to overcome these problems, thin film technology, where a piezoelectric material is deposited on top of a substrate, has been used during the last decades. The piezoelectric/substrate structure allows to reach the frequencies required nowadays and could be compatible with the mass electronic production CMOS technology. This thesis work focuses on the fabrication of SAW devices working in the super-high-frequency range. Thin film technology has been used in order to get it, especially aluminum nitride (AlN) deposited by reactive sputtering on diamond has been used to increase the SAW velocity. Different experiments were carried out to optimize the parameters for the deposit of high quality AlN on any kind of substrates. In addition, the system was optimized under low temperature and thus this process is CMOS compatible. Once the AlN/diamond was optimized, thanks to the used e-beam lithography, nanometric SAW resonators were fabricated. The combination of the structure and the size of the devices allow the fabrication of devices working in the range of 10-28 GHz with a high quality factor and out of band rejection. These high performances and frequencies have not been reached so far for this kind of devices. Moreover, these devices have been used as high sensitivity pressure sensors. They are affected by temperature changes and thus a wide temperature range (-250ºC to 250ºC) study was done. From this study two regions were observed. At very low temperature, the temperature coefficient of frequency (TCF) is low. From -100ºC upwards the TCF is similar to the one appearing in the literature. Therefore, during this thesis work, the sputtering of AlN on diamond substrates was optimized for the CMOS compatible fabrication of high frequency and high performance SAW devices for communication and sensor application.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The unsteady aerodynamics of low pressure turbine vibrating airfoils in flap mode is studied in detail using a frequency domain linearized Navier-Stokes solver. Both the travelling-wave and influence coefficient formulations of the problem are used to highlight key aspects of the physics and understand different trends such as the effect of reduced frequency and Mach number. The study is focused in the low-reduced frequency regime which is of paramount relevance for the design of aeronautical low-pressure turbines and compressors. It is concluded that the effect of the Mach number on the unsteady pressure phase can be neglected in first approximation and that the unsteadiness of the vibrating and adjacent airfoils is driven by vortex shedding mechanisms. Finally a simple model to estimate the work-per-cycle as a function of the reduced frequency and Mach Number is provided. The edge-wise and torsion modes are presented in less detail but it is shown that acoustic waves are essential to explain its behaviour. The non-dimensional work-per-cycle of the edge-wise mode shows a large dependence with the Mach number while in the torsion mode a large number of airfoils is needed to reconstruct the work-per-cycle departing from the influence coefficients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Reliability or validity studies are important for the evaluation of measurement error in dietary assessment methods. An approach to validation known as the method of triads uses triangulation techniques to calculate the validity coefficient of a food-frequency questionnaire (FFQ). Objective: To assess the validity of an FFQ estimates of carotenoid and vitamin E intake against serum biomarker measurements and weighed food records (WFRs), by applying the method of triads. Design: The study population was a sub-sample of adult participants in a randomised controlled trial of beta-carotene and sunscreen in the prevention of skin cancer. Dietary intake was assessed by a self-administered FFQ and a WFR. Nonfasting blood samples were collected and plasma analysed for five carotenoids (alpha-carotene, beta-carotene, beta-cryptoxanthin, lutein, lycopene) and vitamin E. Correlation coefficients were calculated between each of the dietary methods and the validity coefficient was calculated using the method of triads. The 95% confidence intervals for the validity coefficients were estimated using bootstrap sampling. Results: The validity coefficients of the FFQ were highest for alpha-carotene (0.85) and lycopene (0.62), followed by beta- carotene (0.55) and total carotenoids (0.55), while the lowest validity coefficient was for lutein (0.19). The method of triads could not be used for b- cryptoxanthin and vitamin E, as one of the three underlying correlations was negative. Conclusions: Results were similar to other studies of validity using biomarkers and the method of triads. For many dietary factors, the upper limit of the validity coefficients was less than 0.5 and therefore only strong relationships between dietary exposure and disease will be detected.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis describes an industrial research project carried out in collaboration with STC Components, Harlow, Essex. Technical and market trends in the use of surface acoustic wave (SAW) devices are reviewed. As a result, three areas not previously addressed by STC were identified: lower insertion loss designs, higher operating frequencies and improved temperature dependent stability. A review of the temperature performance of alternative lower insertion loss designs,shows that greater use could be made of the on-site quartz growing plant. Data is presented for quartz cuts in the ST-AT range. This data is used to modify the temperature performance of a SAW filter. Several recently identified quartz orientations have been tested. These are SST, LST and X33. Problems associated with each cut are described and devices demonstrated. LST quartz, although sensitive to accuracy of cut, is shown to have an improved temperature coefficient over the normal ST orientation. Results show that its use is restricted due to insertion loss variations with temperature. Effects associated with split-finger transducers on LST-quartz are described. Two low-loss options are studied, coupled resonator filters for very narrow bandwidth applications and single phase unidirectional transducers (SPUDT) for fractional bandwidths up to about 1%. Both designs can be implemented with one quarter wavelength transducer geometries at operating frequencies up to 1GHz. The SPUDT design utilised an existing impulse response model to provide analysis of ladder or rung transducers. A coupled resonator filter at 400MHz is demonstrated with a matched insertion loss of less than 3.5dB and bandwidth of 0.05%. A SPUDT device is designed as a re-timing filter for timing extraction in a long haul PCM transmission system. Filters operating at 565MHz are demonstrated with insertion losses of less than 6dB. This basic SPUDT design is extended to a maximally distributed version and demonstrated at 450MHz with 9.8dB insertion loss.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In Parkinson's disease, subthalamic nucleus (STN) neurons burst fire with increased periodicity and synchrony. This may entail abnormal release of glutamate, the major source of which in STN is cortical afferents. Indeed, the cortico-subthalamic pathway is implicated in the emergence of excessive oscillations, which are reduced, as are symptoms, by dopamine-replacement therapy or deep brain stimulation (DBS) targeted to STN. Here we hypothesize that glutamatergic synapses in the STN may be differentially modulated by low-frequency stimulation (LFS) and high-frequency stimulation (HFS), the latter mimicking deep brain stimulation. Recordings of evoked and spontaneous excitatory post synaptic currents (EPSCs) were made from STN neurons in brain slices obtained from dopamine-intact and chronically dopamine-depleted adult rats. HFS had no significant effect on evoked (e) EPSC amplitude in dopamine-intact slices (104.4±8.0%) but depressed eEPSCs in dopamine-depleted slices (67.8±6.2%). Conversely, LFS potentiated eEPSCs in dopamine-intact slices (126.4±8.1%) but not in dopamine-depleted slices (106.7±10.0%). Analyses of paired-pulse ratio, coefficient of variation, and spontaneous EPSCs suggest that the depression and potentiation have a presynaptic locus of expression. These results indicate that the synaptic efficacy in dopamine-intact tissue is enhanced by LFS. Furthermore, the synaptic efficacy in dopamine-depleted tissue is depressed by HFS. Therefore the therapeutic effects of DBS in Parkinson's disease appear mediated, in part, by glutamatergic cortico-subthalamic synaptic depression and implicate dopamine-dependent increases in the weight of glutamate synapses, which would facilitate the transfer of pathological oscillations from the cortex.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have proposed a similarity matching method (SMM) to obtain the change of Brillouin frequency shift (BFS), in which the change of BFS can be determined from the frequency difference between detecting spectrum and selected reference spectrum by comparing their similarity. We have also compared three similarity measures in the simulation, which has shown that the correlation coefficient is more accurate to determine the change of BFS. Compared with the other methods of determining the change of BFS, the SMM is more suitable for complex Brillouin spectrum profiles. More precise result and much faster processing speed have been verified in our simulation and experiments. The experimental results have shown that the measurement uncertainty of the BFS has been improved to 0.72 MHz by using the SMM, which is almost one-third of that by using the curve fitting method, and the speed of deriving the BFS change by the SMM is 120 times faster than that by the curve fitting method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work presents the development of an in-plane vertical micro-coaxial probe using bulk micromachining technique for high frequency material characterization. The coaxial probe was fabricated in a silicon substrate by standard photolithography and a deep reactive ion etching (DRIE) technique. The through-hole structure in the form of a coaxial probe was etched and metalized with a diluted silver paste. A co-planar waveguide configuration was integrated with the design to characterize the probe. The electrical and RF characteristics of the coaxial probe were determined by simulating the probe design in Ansoft's High Frequency Structure Simulator (HFSS). The reflection coefficient and transducer gain performance of the probe was measured up to 65 GHz using a vector network analyzer (VNA). The probe demonstrated excellent results over a wide frequency band, indicating its ability to integrate with millimeter wave packaging systems as well as characterize unknown materials at high frequencies. The probe was then placed in contact with 3 materials where their unknown permittivities were determined. To accomplish this, the coaxial probe was placed in contact with the material under test and electromagnetic waves were directed to the surface using the VNA, where its reflection coefficient was then determined over a wide frequency band from dc-to -65GHz. Next, the permittivity of each material was deduced from its measured reflection coefficients using a cross ratio invariance coding technique. The permittivity results obtained when measuring the reflection coefficient data were compared to simulated permittivity results and agreed well. These results validate the use of the micro-coaxial probe to characterize the permittivity of unknown materials at high frequencies up to 65GHz.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work presents the development of an in-plane vertical micro-coaxial probe using bulk micromachining technique for high frequency material characterization. The coaxial probe was fabricated in a silicon substrate by standard photolithography and a deep reactive ion etching (DRIE) technique. The through-hole structure in the form of a coaxial probe was etched and metalized with a diluted silver paste. A co-planar waveguide configuration was integrated with the design to characterize the probe. The electrical and RF characteristics of the coaxial probe were determined by simulating the probe design in Ansoft’s High Frequency Structure Simulator (HFSS). The reflection coefficient and transducer gain performance of the probe was measured up to 65 GHz using a vector network analyzer (VNA). The probe demonstrated excellent results over a wide frequency band, indicating its ability to integrate with millimeter wave packaging systems as well as characterize unknown materials at high frequencies. The probe was then placed in contact with 3 materials where their unknown permittivities were determined. To accomplish this, the coaxial probe was placed in contact with the material under test and electromagnetic waves were directed to the surface using the VNA, where its reflection coefficient was then determined over a wide frequency band from dc-to -65GHz. Next, the permittivity of each material was deduced from its measured reflection coefficients using a cross ratio invariance coding technique. The permittivity results obtained when measuring the reflection coefficient data were compared to simulated permittivity results and agreed well. These results validate the use of the micro-coaxial probe to characterize the permittivity of unknown materials at high frequencies up to 65GHz.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In modern power electronics equipment, it is desirable to design a low profile, high power density, and fast dynamic response converter. Increases in switching frequency reduce the size of the passive components such as transformers, inductors, and capacitors which results in compact size and less requirement for the energy storage. In addition, the fast dynamic response can be achieved by operating at high frequency. However, achieving high frequency operation while keeping the efficiency high, requires new advanced devices, higher performance magnetic components, and new circuit topology. These are required to absorb and utilize the parasitic components and also to mitigate the frequency dependent losses including switching loss, gating loss, and magnetic loss. Required performance improvements can be achieved through the use of Radio Frequency (RF) design techniques. To reduce switching losses, resonant converter topologies like resonant RF amplifiers (inverters) combined with a rectifier are the effective solution to maintain high efficiency at high switching frequencies through using the techniques such as device parasitic absorption, Zero Voltage Switching (ZVS), Zero Current Switching (ZCS), and a resonant gating. Gallium Nitride (GaN) device technologies are being broadly used in RF amplifiers due to their lower on- resistance and device capacitances compared with silicon (Si) devices. Therefore, this kind of semiconductor is well suited for high frequency power converters. The major problems involved with high frequency magnetics are skin and proximity effects, increased core and copper losses, unbalanced magnetic flux distribution generating localized hot spots, and reduced coupling coefficient. In order to eliminate the magnetic core losses which play a crucial role at higher operating frequencies, a coreless PCB transformer can be used. Compared to the conventional wire-wound transformer, a planar PCB transformer in which the windings are laid on the Printed Board Circuit (PCB) has a low profile structure, excellent thermal characteristics, and ease of manufacturing. Therefore, the work in this thesis demonstrates the design and analysis of an isolated low profile class DE resonant converter operating at 10 MHz switching frequency with a nominal output of 150 W. The power stage consists of a class DE inverter using GaN devices along with a sinusoidal gate drive circuit on the primary side and a class DE rectifier on the secondary side. For obtaining the stringent height converter, isolation is provided by a 10-layered coreless PCB transformer of 1:20 turn’s ratio. It is designed and optimized using 3D Finite Element Method (FEM) tools and radio frequency (RF) circuit design software. Simulation and experimental results are presented for a 10-layered coreless PCB transformer operating in 10 MHz.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The over-production of reactive oxygen species (ROS) can cause oxidative damage to a large number of molecules, including DNA, and has been associated with the pathogenesis of several disorders, such as diabetes mellitus (DM), dyslipidemia and periodontitis (PD). We hypothesise that the presence of these diseases could proportionally increase the DNA damage. The aim of this study was to assess the micronucleus frequency (MNF), as a biomarker for DNA damage, in individuals with type 2 DM, dyslipidemia and PD. One hundred and fifty patients were divided into five groups based upon diabetic, dyslipidemic and periodontal status (Group 1 - poor controlled DM with dyslipidemia and PD; Group 2 - well-controlled DM with dyslipidemia and PD; Group 3 - without DM with dyslipidemia and PD; Group 4 - without DM, without dyslipidemia and with PD; and Group 5 - without DM, dyslipidemia and PD). Blood analyses were carried out for fasting plasma glucose, HbA1c and lipid profile. Periodontal examinations were performed, and venous blood was collected and processed for micronucleus (MN) assay. The frequency of micronuclei was evaluated by cell culture cytokinesis-block MN assay. The general characteristics of each group were described by the mean and standard deviation and the data were submitted to the Mann-Whitney, Kruskal-Wallis, Multiple Logistic Regression and Spearman tests. The Groups 1, 2 and 3 were similarly dyslipidemic presenting increased levels of total cholesterol, low density lipoprotein cholesterol and triglycerides. Periodontal tissue destruction and local inflammation were significantly more severe in diabetics, particularly in Group 1. Frequency of bi-nucleated cells with MN and MNF, as well as nucleoplasmic bridges, were significantly higher for poor controlled diabetics with dyslipidemia and PD in comparison with those systemically healthy, even after adjusting for age, and considering Bonferroni's correction. Elevated frequency of micronuclei was found in patients affected by type 2 diabetes, dyslipidemia and PD. This result suggests that these three pathologies occurring simultaneously promote an additional role to produce DNA impairment. In addition, the micronuclei assay was useful as a biomarker for DNA damage in individuals with chronic degenerative diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mutations in the FGFR3 gene cause the phenotypic spectrum of FGFR3 chondrodysplasias ranging from lethal forms to the milder phenotype seen in hypochondroplasia (Hch). The p.N540K mutation in the FGFR3 gene occurs in ∼70% of individuals with Hch, and nearly 30% of individuals with the Hch phenotype have no mutations in the FGFR3, which suggests genetic heterogeneity. The identification of a severe case of Hch associated with the typical mutation c.1620C > A and the occurrence of a c.1150T > C change that resulted in a p.F384L in exon 10, together with the suspicion that this second change could be a modulator of the phenotype, prompted us to investigate this hypothesis in a cohort of patients. An analysis of 48 patients with FGFR3 chondrodysplasia phenotypes and 330 healthy (control) individuals revealed no significant difference in the frequency of the C allele at the c.1150 position (p = 0.34). One patient carrying the combination `pathogenic mutation plus the allelic variant c.1150T > C' had a typical achondroplasia (Ach) phenotype. In addition, three other patients with atypical phenotypes showed no association with the allelic variant. Together, these results do not support the hypothesis of a modulatory role for the c.1150T > C change in the FGFR3 gene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Networks of Kuramoto oscillators with a positive correlation between the oscillators frequencies and the degree of their corresponding vertices exhibit so-called explosive synchronization behavior, which is now under intensive investigation. Here we study and discuss explosive synchronization in a situation that has not yet been considered, namely when only a part, typically a small part, of the vertices is subjected to a degree-frequency correlation. Our results show that in order to have explosive synchronization, it suffices to have degree-frequency correlations only for the hubs, the vertices with the highest degrees. Moreover, we show that a partial degree-frequency correlation does not only promotes but also allows explosive synchronization to happen in networks for which a full degree-frequency correlation would not allow it. We perform a mean-field analysis and our conclusions were corroborated by exhaustive numerical experiments for synthetic networks and also for the undirected and unweighed version of a typical benchmark biological network, namely the neural network of the worm Caenorhabditis elegans. The latter is an explicit example where partial degree-frequency correlation leads to explosive synchronization with hysteresis, in contrast with the fully correlated case, for which no explosive synchronization is observed.