995 resultados para Mediterranean forest
Resumo:
Natural regeneration-based silviculture has been increasingly regarded as a reliable option in sustainable forest management. However, successful natural regeneration is not always easy to achieve. Recently, new concerns have arisen because of changing future climate. To date, regeneration models have proved helpful in decision-making concerning natural regeneration. The implementation of such models into optimization routines is a promising approach in providing forest managers with accurate tools for forest planning. In the present study, we present a stochastic multistage regeneration model for Pinus pinea L. managed woodlands in Central Spain, where regeneration has been historically unsuccessful. The model is able to quantify recruitment under different silviculture alternatives and varying climatic scenarios, with further application to optimize management scheduling. The regeneration process in the species showed high between-year variation, with all subprocesses (seed production, dispersal, germination, predation, and seedling survival) having the potential to become bottlenecks. However, model simulations demonstrate that current intensive management is responsible for regeneration failure in the long term. Specifically, stand densities at rotation age are too low to guarantee adequate dispersal, the optimal density of seed-producing trees being around 150 stems·ha−1. In addition, rotation length needs to be extended up to 120 years to benefit from the higher seed production of older trees. Stochastic optimization confirms these results. Regeneration does not appear to worsen under climate change conditions; the species exhibiting resilience worthy of broader consideration in Mediterranean silviculture.
Resumo:
Disturbances shape forest ecosystems by influencing their composition, structure, and processes. In the Mediterranean Basin, changes in the disturbance regimes have been predicted to occur in the next future with a higher occurrence of extreme events of drought, wildfire, and – to a lesser extent – windstorm. Woody species are the main elements defining the structure and functioning of forest ecosystems. Recently, response-type diversity has been pointed out as an appropriate indicator of ecosystems resilience. For this, we have elaborated a complete response-trait database for the tree and shrubby species considered in the Third Spanish National Forest Inventory (3SNFI). In the database, the presence or absence of nine response traits associated to drought, fire, and wind were assigned to each species. The database reflected the lack of information about some important traits (in particular for shrubby species) and allowed to determine those traits most widely distributed. The information contained in the database was then used to assess a relative index of forest resilience to these disturbances calculated from the abundance of response traits and the species redundancy for each plot of the 3SNFI; considering both tree and shrubby species. In general, few plots showed high values of the resilience index, probably because some traits were scarcely presented in the species and also because most plots presented very few species. The cartographic representation of the index showed low values for the stands located in mountainous ranges, which are mostly composed by species typical from central Europe. In the other side, Eucalyptus plantations in Galicia appeared as one thee the most resilient ecosystems, due to its higher adaptive capacity to persist after the occurrence of drought, fire, and windstorm events. We conclude that the response traits database can constitute a useful tool for forest management and planning and for future research to enhance the forest resilience.
Resumo:
Los montes Mediterráneos han experimentado múltiples cambios en las últimas décadas (tanto en clima como en usos), lo que ha conducido a variaciones en la distribución de especies. El aumento previsto de las temperaturas medias junto con la mayor variabilidad intra e inter anual en cuanto a la ocurrencia de eventos extremos o disturbios naturales (como periodos prolongados de sequía, olas de frío o calor, incendios forestales o vendavales) pueden dañar significativamente al regenerado, llevándolo hasta la muerte, y jugando un papel decisivo en la composición de especies y en la dinámica del monte. La amplitud ecológica de muchas especies forestales puede verse afectada, de forma que se esperan cambios en sus nichos actuales de regeneración. Sin embargo, la migración latitudinal de las especies en busca de mejores condiciones, podría ser una explicación demasiado simplista de un proceso mucho más complejo de interacción entre la temperatura y la precipitación, que afectaría a cada especie de un modo distinto. En este sentido tanto la capacidad de adaptación al estrés ambiental de una determinada especie, así como su habilidad para competir por los recursos limitados, podría significar variaciones dentro de una comunidad. Las características fisiológicas y morfológicas propias de cada especie se encuentran fuertemente relacionadas con el lugar donde cada una puede surgir, qué especies pueden convivir y como éstas responden a las condiciones ambientales. En este sentido, el conocimiento sobre las distintas respuestas ecofisiológicas observadas ante cambios ambientales puede ser fundamentales para la predicción de variaciones en la distribución de especies, composición de la comunidad y productividad del monte ante el cambio global. En esta tesis investigamos el grado de tolerancia y sensibilidad que cada una de las tres especies de estudio, coexistentes en el interior peninsular ibérico (Pinus pinea, Quercus ilex y Juniperus oxycedrus), muestra ante los factores abióticos de estrés típicos de la región Mediterránea. Nuestro trabajo se ha basado en la definición del nicho óptimo fisiológico para el regenerado de cada especie a través de la investigación en profundidad del efecto de la sequía, la temperatura y el ambiente lumínico. Para ello, hemos desarrollado un modelo de predicción de la tasa de asimilación de carbono que nos ha permitido identificar las condiciones óptimas ambientales donde el regenerado de cada especie podría establecerse con mayor facilidad. En apoyo a este trabajo y con la idea de estudiar el efecto de la sequía a nivel de toda la planta hemos desarrollado un experimento paralelo en invernadero. Aquí se han aplicado dos regímenes hídricos para estudiar las características fisiológicas y morfológicas de cada especie, sobre todo a nivel de raíz y crecimiento del tallo, y relacionarlas con las diferentes estrategias en el uso del agua de las especies. Por último, hemos estudiado los patrones de aclimatación y desaclimatación al frio de cada especie, identificando los periodos de sensibilidad a heladas, así como cuellos de botella donde la competencia entre especies podría surgir. A pesar de que el pino piñonero ha sido la especie objeto de la gestión de estas masas durante siglos, actualmente se encuentra en la posición más desfavorable para combatir el cambio global, presentado el nicho fisiológico más estrecho de las tres especies. La encina sin embargo, ha resultado ser la especie mejor cualificada para afrontar este cambio, seguida muy de cerca por el enebro. Nuestros resultados sugieren una posible expansión en el rango de distribución de la encina, un aumento en la presencia del enebro y una disminución progresiva del pino piñonero a medio plazo en estas masas. ABSTRACT Mediterranean forests have undergone multiple changes over the last decades (in both climate and land use), which have lead to variations in the distribution of species. The expected increase in mean annual temperature together with the greater inter and intra-annual variability in extreme events and disturbances occurrence (such as prolonged drought periods, cold or heat waves, wildfires or strong winds) can significantly damage natural regeneration, up to causing death, playing a decisive role on species composition and forest dynamics. The ecological amplitude for adaptation of many species can be affected in such a way that changes in the current regeneration niches of many species are expected. However, the forecasted poleward migration of species seeking better conditions could be an oversimplification of what is a more complex phenomenon of interactions among temperature and precipitation, that would affect different species in different ways. In this regard, either the ability to adapt to environmental stresses or to compete for limited resources of a single species in a mixed forest could lead to variations within a community. The ecophysiological and morphological traits specific to each species are strongly related to the place where each species can emerge, which species can coexist, and how they respond to environmental conditions. In this regard, the understanding of the ecophysiological responses observed against changes in environmental conditions can be essential for predicting variations in species distribution, community composition, and forest productivity in the context of global change. In this thesis we investigated the degree of tolerance and sensitivity that each of the three studied species, co-occurring in central of the Iberian Peninsula (Pinus pinea, Quercus ilex and Juniperus oxycedrus), show against the typical abiotic stress factors in the Mediterranean region. Our work is based on the optimal physiological niche for regeneration of each species through in-depth research on the effect of drought, temperature and light environment. For this purpose, we developed a model to predict the carbon assimilation rate which allows us to identify the optimal environmental conditions where regeneration from each species could establish itself more easily. To obtain a better understanding about the effect of low temperature on regeneration, we studied the acclimation and deacclimation patterns to cold of each species, identifying period of frost sensitivity, as well as bottlenecks where competition between species can arise. Finally, to support our results about the effect of water availabilty, we conducted a greenhouse experiment with a view of studying the drought effect at the whole plant level. Here, two watering regimes were applied in order to study the physiological and morphological traits of each species, mainly at the level of the root system and stem growth, and so relate them to the different water use strategies of the species. Despite the fact that stone pine has been the target species for centuries, nowadays this species is in the most unfavorable position to cope with climate change. Holm oak, however, resulted the species that is best adapted to tolerate the predicted changes, followed closely by prickly juniper. Our results suggest a feasible expansion of the distribution range in holm oak, an increase in the prickly juniper presence and a progressive decreasing of stone pine presence in the medium term in these stone pine-holm oak-prickly juniper mixed forests.
Resumo:
The aim of this study was to determine the germination characteristics of Phillyrea angustifolia L. and P. latifolia L. seeds in order to develop an optimized propagation protocol for Phillyrea species. Seeds of P. angustifolia and P. latifolia were collected from wild plants growing in Cáceres province (CW Spain) and Andalucía (S Spain), respectively. Percentage of water uptake for P. latifolia seeds was calculated. Seeds with and without endocarp were germinated at different constant and alternating temperatures. Seeds without endocarp were soaked in distilled water or gibberellic acid, and then set to germinate. Seeds with endocarp of both species were stratified at 5 ºC for 30 or 90 days and then the endocarp was completely removed from the seeds before they were sowed. Chemical scarification with sulfuric acid and mechanical scarification were tested on P. angustifolia seeds with endocarp. Phillyrea endocarp was permeable to water, since Phillyrea seeds with endocarp imbibed water, but water uptake was faster when the endocarp was removed. Moreover, the encodarp could interfere mechanically in the emergence of the radicle, since seed germination of Phillyrea species was promoted by the complete removal of the lignified endocarp surrounding each seed. Optimal germination temperature for both species was 15 ºC, and lower temperatures produced secondary dormancy. Soaking in distilled water or gibberellic acid did not significantly enhance seed germination. Cold stratification and chemical scarification treatments were detrimental for seed germination. Keywords cold stratification, Phillyrea species, treatments before sowing, seed germination, seed scarification, lignified endocarp.
Resumo:
In this study, we seeded a native plant species and applied a mulch of chopped wood originating from the same burned area to avoid the establishment of invasive species. We evaluated four treatments: (1) seeding, (2) mulch, (3) seeding and mulch, and (4) control. Our objective was to increase plant recovery and to minimize the soil erosion and degradation. The study was conducted in Alicante, Spain in Torremanzanas forest of the semi-arid Mediterranean bioclimatic area after the wildfire of November, 2002. During three years of monitoring, we find that combined treatment: seeding and mulch increased the post fire plant recovery 20% approximately more than the rest of treatments and the control plots. We also found that seven months after treating mulch and seeding and mulch treatments presented a gain of soil: +5.18 to + 5.24 mm while the seeding treatment and control plots presented soil loss rates of: −0.48 to −0.49 mm. In addition, mulch treatment significantly decreased soil compaction to the half, and increased the infiltration capacity to 40 ml.mn−1 more than in plots without mulch, as well as increased the soil respiration to the double compared with no mulch plots. Work in progress confirms the positive effect of chopped wood as mulching treatment with or without seeding on the soil protection against soil erosion, and the amelioration of bio-physical properties after wildfires in the Mediterranean semi-arid burned areas.
Resumo:
Doutoramento em Engenharia Florestal e dos Recursos Naturais - Instituto Superior de Agronomia - UL
Resumo:
Mestrado Mediterranean Forestry and Natural Resources Management - Instituto Superior de Agronomia - UL
Resumo:
Forest biomass has been having an increasing importance in the world economy and in the evaluation of the forests development and monitoring. It was identified as a global strategic reserve, due to its applications in bioenergy, bioproduct development and issues related to reducing greenhouse gas emissions. The estimation of above ground biomass is frequently done with allometric functions per species with plot inventory data. An adequate sampling design and intensity for an error threshold is required. The estimation per unit area is done using an extrapolation method. This procedure is labour demanding and costly. The mail goal of this study is the development of allometric functions for the estimation of above ground biomass with ground cover as independent variable, for forest areas of holm aok (Quercus rotundifolia), cork oak (Quercus suber) and umbrella pine (Pinus pinea) in multiple use systems. Ground cover per species was derived from crown horizontal projection obtained by processing high resolution satellite images, orthorectified, geometrically and atmospheric corrected, with multi-resolution segmentation method and object oriented classification. Forest inventory data were used to estimate plot above ground biomass with published allometric functions at tree level. The developed functions were fitted for monospecies stands and for multispecies stands of Quercus rotundifolia and Quercus suber, and Quercus suber and Pinus pinea. The stand composition was considered adding dummy variables to distinguish monospecies from multispecies stands. The models showed a good performance. Noteworthy is that the dummy variables, reflecting the differences between species, originated improvements in the models. Significant differences were found for above ground biomass estimation with the functions with and without the dummy variables. An error threshold of 10% corresponds to stand areas of about 40 ha. This method enables the overall area evaluation, not requiring extrapolation procedures, for the three species, which occur frequently in multispecies stands.
Resumo:
Silvo-pastoral are mixed systems of trees and grass, which have been proposed as a means to extend the benefits of forest to farmed land. Agro-forestry systems under semi-arid Mediterranean conditions, called montados in Portugal and dehesas in Spain, cover substantial areas in the world. These silvo-pastoral systems are the most extensive European agro-forestry system, as they cover 3.5–4.0 Mha in Spain and Portugal. Long-term studies are essential to assess the magnitude of the temporal nutrient flow dynamics in terrestrial ecosystems and to understand the response of these systems to fertilizer management. In order to implement the conservation task and recovery of resources through silvo-pastoral systems it is necessary to know and correct potential limiting factors, especially the soil factor, and this requires agronomic knowledge as well as the implmentation of the available new technologies. In this context, this task aims at a better understanding of the contribution of the two components of montado ecosystem (trees and herbaceous vegetation) on the soil nutrient and water dynamics, that allow for the interpretation of the variability of pasture dry matter yield and help the farmer in the management of tree density. Collaterally the task will evaluate and calibrate new technologies that simplify the monitoring of soil, grassland, trees and grazing animals.
Resumo:
Aim To examine the distributional patterns of vertebrates (including birds, bats, carnivores and lagomorphs) along landscape composition and configuration gradients to better understand the effects of landscape modification on occurrence patterns at both species and community level. Location The region of Alentejo, a forest-dominated area of southern Portugal. Methods The study area was framed using 1647 hexagonal plots, each of 259 ha in size. Composition and configuration gradients were obtained for each plot by integrating the proportions of the main land cover types and their configuration patterns using multivariate analyses. Species-specific vertebrate responses were investigated using data from 75 plots in which carnivores, bats and lagomorphs were sampled, and from 135 plots in the case of birds. Community- level responses were investigated through changes in species richness and beta-diversity in 57 plots where all vertebrate groups were simultaneously sampled. At the species-level, an information-theoretic approach was used to determine the effects of landscape gradients on species’ responses. At the community level, Mantel tests were used to determine between-plot differences in species composition using the Sørensen dissimilarity index. Results We found that the occurrence patterns of most vertebrate species were best predicted by composition-related gradients, although configuration gradients were also frequently included in species-specific occurrence models. We also found a weak correlation between species richness and most landscape gradients suggesting a turnover in the identity of species, something that was corroborated by the stronger correlation between environmental gradients and beta-diversity measures. The amount of forest cover and landscape complexity (estimated as the heterogeneity in the size and number of land cover types) were the main composition and configuration gradients determining vertebrate responses at both species and community level. Main conclusions Our work contributes to a more refined understanding of the mechanisms underlying species distributional patterns in real-world human-modified landscapes. By uncovering generalities of species with multiple ecological requirements and by describing the entire landscape mosaic through landscape gradients, we also suggest that our work greatly helps to fill the gap between existing conceptual landscape models aimed to understand species distributional patterns in human-modified landscapes.
Resumo:
The world distribution of cork oak Quercus suber and holm oak Q. rotundifolia is basically restricted to the western Mediterranean basin. These two evergreen oaks are the base of the Portuguese montado and the Spanish dehesa. This thesis aims to analyse how bird communities of the montado are influenced by management practices. We used different approaches to study this relationship, and to evaluate which features are responsible for species distribution in different typologies of montado. First, we reviewed the concept of montado in order to better understand the system and to set thresholds on what can be considered as montado. Afterwards, we studied the elements that promote higher species diversity and individual species, or group of species, that can act as indicators of High Nature Value for montados. Finally, we evaluated how the bird communities are structured, and the influence of the main management actions (e.g. cattle and cork exploitation) on those communities; Resumo: A distribuição mundial do sobreiro Quercus suber e da azinheira Quercus rotundifolia é praticamente restrita à bacia do Mediterrâneo. Estas duas espécies de carvalhos são a base dos montados em Portugal e das dehesas em Espanha. No âmbito desta tese analisamos como as comunidades de aves do montado são influenciadas pela gestão florestal. Para este efeito usámos diferentes abordagens e avaliámos quais as características do montado responsáveis pela distribuição das espécies ao longo das suas diferentes tipologias. Fizemos uma revisão do conceito de montado e proposemos uma definição para o sistema, englobando a sua multifuncionalidade. Estudámos os elementos singulares que promovem a diversidade de aves e que podem ser simultaneamente indicadores de áreas de Alto Valor Natural (HNV). Por fim, avaliámos qual a influência da gestão (p. ex. pastoreio e descortiçamento) na estruturação das comunidades de aves.
Resumo:
In this study we examined the impact of weather variability and tides on the transmission of Barmah Forest virus (BFV) disease and developed a weather-based forecasting model for BFV disease in the Gladstone region, Australia. We used seasonal autoregressive integrated moving-average (SARIMA) models to determine the contribution of weather variables to BFV transmission after the time-series data of response and explanatory variables were made stationary through seasonal differencing. We obtained data on the monthly counts of BFV cases, weather variables (e.g., mean minimum and maximum temperature, total rainfall, and mean relative humidity), high and low tides, and the population size in the Gladstone region between January 1992 and December 2001 from the Queensland Department of Health, Australian Bureau of Meteorology, Queensland Department of Transport, and Australian Bureau of Statistics, respectively. The SARIMA model shows that the 5-month moving average of minimum temperature (β = 0.15, p-value < 0.001) was statistically significantly and positively associated with BFV disease, whereas high tide in the current month (β = −1.03, p-value = 0.04) was statistically significantly and inversely associated with it. However, no significant association was found for other variables. These results may be applied to forecast the occurrence of BFV disease and to use public health resources in BFV control and prevention.
Resumo:
Knowledge of particle emission characteristics associated with forest fires and in general, biomass burning, is becoming increasingly important due to the impact of these emissions on human health. Of particular importance is developing a better understanding of the size distribution of particles generated from forest combustion under different environmental conditions, as well as provision of emission factors for different particle size ranges. This study was aimed at quantifying particle emission factors from four types of wood found in South East Queensland forests: Spotted Gum (Corymbia citriodora), Red Gum (Eucalypt tereticornis), Blood Gum (Eucalypt intermedia), and Iron bark (Eucalypt decorticans); under controlled laboratory conditions. The experimental set up included a modified commercial stove connected to a dilution system designed for the conditions of the study. Measurements of particle number size distribution and concentration resulting from the burning of woods with a relatively homogenous moisture content (in the range of 15 to 26 %) and for different rates of burning were performed using a TSI Scanning Mobility Particle Sizer (SMPS) in the size range from 10 to 600 nm and a TSI Dust Trak for PM2.5. The results of the study in terms of the relationship between particle number size distribution and different condition of burning for different species show that particle number emission factors and PM2.5 mass emission factors depend on the type of wood and the burning rate; fast burning or slow burning. The average particle number emission factors for fast burning conditions are in the range of 3.3 x 1015 to 5.7 x 1015 particles/kg, and for PM2.5 are in the range of 139 to 217 mg/kg.