943 resultados para Mediator Release
Resumo:
The focus of this paper is preparing research for dissemination by mainstream print, broadcast, and online media. While the rise of the blogosphere and social media is proving an effective way of reaching niche audiences, my own research reached such an audience through traditional media. The first major study of Australian horror cinema, my PhD thesis A Dark New World: Anatomy of Australian Horror Films, generated strong interest from horror movie fans, film scholars, and filmmakers. I worked closely with the Queensland University of Technology’s (QUT) public relations unit to write two separate media releases circulated on October 13, 2008 and October 14, 2009. This chapter reflects upon the process of working with the media and provides tips for reaching audiences, particularly in terms of strategically planning outcomes. It delves into the background of my study which would later influence my approach to the media, the process of drafting media releases, and key outcomes and benefits from popularising research. A key lesson from this experience is that redeveloping research for the media requires a sharp writing style, letting go of academic justification, catchy quotes, and an ability to distil complex details into easy-to-understand concepts. Although my study received strong media coverage, and I have since become a media commentator, my experiences also revealed a number of pitfalls that are likely to arise for other researchers keen on targeting media coverage.
Resumo:
The development of growth factor delivery strategies to circumvent the burst release phenomenon prevalent in most current systems has driven research towards encapsulating molecules in resorbable polymer matrices. For these polymer release techniques to be efficacious in a clinical setting, several key points need to be addressed. This present study has investigated the encapsulation of the growth factor, BMP-2 within PLGA/PLGA-PEG-PLGA microparticles. Morphology, size distribution, encapsulation efficiency and release kinetics were investigated and we have demonstrated a sustained release of bioactive BMP-2. Furthermore, biocompatibility of the PLGA microparticles was established and released BMP-2 was shown to promote the differentiation of MC3T3-E1 cells towards the osteogenic lineage to a greater extent than osteogenic supplements (as early as day 10 in culture), as determined using alkaline phosphatase and alizarin red assays. This study showcases a potential BMP-2 delivery system which may now be translated into more complex delivery systems, such as 3D, mechanically robust scaffolds for bone tissue regeneration applications.
Resumo:
Vascular endothelial growth factor (VEGF) and bone morphogenetic proteins (BMP-7) are key regulators of angiogenesis and osteogenesis during bone regeneration. The aim of this study was to investigate the possibility of realizing sequential release of the two growth factors using a novel composite scaffold. Poly(lactic-co-glycolic acid) (PLGA)-Akermanite (AK) microspheres were used to make the composite scaffold, which was then loaded with BMP-7, followed by embedding in a gelatin hydrogel matrix loaded with VEGF. The release profiles of the growth factors were studied and selected osteogenic related markers of bone marrow stromal cells (BMSCs) were analysed. It was shown that the composite scaffolds exhibited a fast initial burst release of VEGF within the first 3 days and a sustained slow release of BMP-7 over the full period of 20 days. The in vitro proliferation and differentiation of the BMSCs cultured in the osteogenic medium were enhanced by 1 to 2 times, resulting from the additionally and sequentially release of growth factors from the PLGA-AK/gelatin composite scaffolds.
Resumo:
Low oxygen pressure (hypoxia) plays an important role in stimulating angiogenesis; there are, however, few studies to prepare hypoxia-mimicking tissue engineering scaffolds. Mesoporous bioactive glass (MBG) has been developed as scaffolds with excellent osteogenic properties for bone regeneration. Ionic cobalt (Co) is established as a chemical inducer of hypoxia-inducible factor (HIF)-1α, which induces hypoxia-like response. The aim of this study was to develop hypoxia-mimicking MBG scaffolds by incorporating ionic Co2+ into MBG scaffolds and investigate if the addition of Co2+ ions would induce a cellular hypoxic response in such a tissue engineering scaffold system. The composition, microstructure and mesopore properties (specific surface area, nano-pore volume and nano-pore distribution) of Co-containing MBG (Co-MBG) scaffolds were characterized and the cellular effects of Co on the proliferation, differentiation, vascular endothelial growth factor (VEGF) secretion, HIF-1α expression and bone-related gene expression of human bone marrow stromal cells (BMSCs) in MBG scaffolds were systematically investigated. The results showed that low amounts of Co (< 5%) incorporated into MBG scaffolds had no significant cytotoxicity and that their incorporation significantly enhanced VEGF protein secretion, HIF-1α expression, and bone-related gene expression in BMSCs, and also that the Co-MBG scaffolds support BMSC attachment and proliferation. The scaffolds maintain a well-ordered mesopore channel structure and high specific surface area and have the capacity to efficiently deliver antibiotics drugs; in fact, the sustained released of ampicillin by Co-MBG scaffolds gives them excellent anti-bacterial properties. Our results indicate that incorporating cobalt ions into MBG scaffolds is a viable option for preparing hypoxia-mimicking tissue engineering scaffolds and significantly enhanced hypoxia function. The hypoxia-mimicking MBG scaffolds have great potential for bone tissue engineering applications by combining enhanced angiogenesis with already existing osteogenic properties.
Resumo:
Eukaryotic cell cycle progression is mediated by phosphorylation of protein substrates by cyclin-dependent kinases (CDKs). A critical substrate of CDKs is the product of the retinoblastoma tumor suppressor gene, pRb, which inhibits G1-S phase cell cycle progression by binding and repressing E2F transcription factors. CDK-mediated phosphorylation of pRb alleviates this inhibitory effect to promote G1-S phase cell cycle progression. pRb represses transcription by binding to the E2F transactivation domain and recruiting the mSin3·histone deacetylase (HDAC) transcriptional repressor complex via the retinoblastoma-binding protein 1 (RBP1). RBP1 binds to the pocket region of pRb via an LXCXE motif and to the SAP30 subunit of the mSin3·HDAC complex and, thus, acts as a bridging protein in this multisubunit complex. In the present study we identified RBP1 as a novel CDK substrate. RBP1 is phosphorylated by CDK2 on serines 864 and 1007, which are N- and C-terminal to the LXCXE motif, respectively. CDK2-mediated phosphorylation of RBP1 or pRb destabilizes their interaction in vitro, with concurrent phosphorylation of both proteins leading to their dissociation. Consistent with these findings, RBP1 phosphorylation is increased during progression from G 1 into S-phase, with a concurrent decrease in its association with pRb in MCF-7 breast cancer cells. These studies provide new mechanistic insights into CDK-mediated regulation of the pRb tumor suppressor during cell cycle progression, demonstrating that CDK-mediated phosphorylation of both RBP1 and pRb induces their dissociation to mediate release of the mSin3·HDAC transcriptional repressor complex from pRb to alleviate transcriptional repression of E2F.
Resumo:
The Toolbox, combined with MATLAB ® and a modern workstation computer, is a useful and convenient environment for investigation of machine vision algorithms. For modest image sizes the processing rate can be sufficiently ``real-time'' to allow for closed-loop control. Focus of attention methods such as dynamic windowing (not provided) can be used to increase the processing rate. With input from a firewire or web camera (support provided) and output to a robot (not provided) it would be possible to implement a visual servo system entirely in MATLAB. Provides many functions that are useful in machine vision and vision-based control. Useful for photometry, photogrammetry, colorimetry. It includes over 100 functions spanning operations such as image file reading and writing, acquisition, display, filtering, blob, point and line feature extraction, mathematical morphology, homographies, visual Jacobians, camera calibration and color space conversion.
Resumo:
The ninth release of the Toolbox, represents over fifteen years of development and a substantial level of maturity. This version captures a large number of changes and extensions generated over the last two years which support my new book “Robotics, Vision & Control”. The Toolbox has always provided many functions that are useful for the study and simulation of classical arm-type robotics, for example such things as kinematics, dynamics, and trajectory generation. The Toolbox is based on a very general method of representing the kinematics and dynamics of serial-link manipulators. These parameters are encapsulated in MATLAB ® objects - robot objects can be created by the user for any serial-link manipulator and a number of examples are provided for well know robots such as the Puma 560 and the Stanford arm amongst others. The Toolbox also provides functions for manipulating and converting between datatypes such as vectors, homogeneous transformations and unit-quaternions which are necessary to represent 3-dimensional position and orientation. This ninth release of the Toolbox has been significantly extended to support mobile robots. For ground robots the Toolbox includes standard path planning algorithms (bug, distance transform, D*, PRM), kinodynamic planning (RRT), localization (EKF, particle filter), map building (EKF) and simultaneous localization and mapping (EKF), and a Simulink model a of non-holonomic vehicle. The Toolbox also including a detailed Simulink model for a quadcopter flying robot.
Resumo:
Timed-release cryptography addresses the problem of “sending messages into the future”: information is encrypted so that it can only be decrypted after a certain amount of time, either (a) with the help of a trusted third party time server, or (b) after a party performs the required number of sequential operations. We generalise the latter case to what we call effort-release public key encryption (ER-PKE), where only the party holding the private key corresponding to the public key can decrypt, and only after performing a certain amount of computation which may or may not be parallelisable. Effort-release PKE generalises both the sequential-operation-based timed-release encryption of Rivest, Shamir, and Wagner, and also the encapsulated key escrow techniques of Bellare and Goldwasser. We give a generic construction for ER-PKE based on the use of moderately hard computational problems called puzzles. Our approach extends the KEM/DEM framework for public key encryption by introducing a difficulty notion for KEMs which results in effort-release PKE. When the puzzle used in our generic construction is non-parallelisable, we recover timed-release cryptography, with the addition that only the designated receiver (in the public key setting) can decrypt.
Resumo:
Clusterin is a stress-activated, cytoprotective chaperone that confers broad-spectrum treatment resistance in cancer. However, the molecular mechanisms mediating CLU transcription following anticancer treatment stress remain incompletely defined. We report that Y-box binding protein-1 (YB-1) directly binds to CLU promoter regions to transcriptionally regulate clusterin expression. In response to endoplasmic reticulum stress inducers, including paclitaxel, YB-1 is translocated to the nucleus to transactivate clusterin. Furthermore, higher levels of activated YB-1 and clusterin are seen in taxane-resistant, compared with parental, prostate cancer cells. Knockdown of either YB-1 or clusterin sensitized prostate cancer cells to paclitaxel, whereas their overexpression increased resistance to taxane. Clusterin overexpression rescued cells from increased paclitaxel-induced apoptosis following YB-1 knockdown; in contrast, however, YB-1 overexpression did not rescue cells from increased paclitaxel-induced apoptosis following clusterin knockdown. Collectively, these data indicate that YB-1 transactivation of clusterin in response to stress is a critical mediator of paclitaxel resistance in prostate cancer. Mol Cancer Res; 9(12); 1755–66.
Resumo:
The rapeutic options for malignant pleural mesothelioma (MPM) are limited despite the increasing incidence globally. The vinca alkaloid vinorelbine exhibits clinical activity; however, to date, treatment optimization has not been achieved using biomarkers. BRCA1 regulates sensitivity to microtubule poisons; however, its role in regulating vinorelbine-induced apoptosis in mesothelioma is unknown. Here we demonstrate that BRCA1 plays an essential role in mediating vinorelbine-induced apoptosis, as evidenced by (1) the strong correlation between vinorelbine sensitivity and BRCA1 expression level; (2) induction of resistance to vinorelbine by BRCA1 using siRNA oligonucleotides; (3) dramatic down-regulation of BRCA1 following selection for vinorelbine resistance; and (4) the re-activation of vinorelbine-induced apoptosis following re-expression of BRCA1 in resistant cells. To determine whether loss of BRCA1 expression in mesothelioma was potentially relevant in vivo, BRCA1 immunohistochemistry was subsequently performed on 144 primary mesothelioma specimens. Loss of BRCA1 protein expression was identified in 38.9% of samples. Together, these data suggest that BRCA1 plays a critical role in mediating apoptosis by vinorelbine in mesothelioma, warranting its clinical evaluation as a predictive biomarker. Copyright © 2012 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Resumo:
Small interfering RNA silences specific genes by interfering with mRNA translation, and acts to modulate or inhibit specific biological pathways; a therapy that holds great promise in the cure of many diseases. However, the naked small interfering RNA is susceptible to degradation by plasma and tissue nucleases and due to its negative charge unable to cross the cell membrane. Here we report a new polymer carrier designed to mimic the influenza virus escape mechanism from the endosome, followed by a timed release of the small interfering RNA in the cytosol through a self-catalyzed polymer degradation process. Our polymer changes to a negatively charged and non-toxic polymer after the release of small interfering RNA, presenting potential for multiple repeat doses and long-term treatment of diseases.