978 resultados para Medawar, Peter B


Relevância:

80.00% 80.00%

Publicador:

Resumo:

OBJECTIVES The importance of phrenic nerve preservation during pneumonectomy remains controversial. We previously demonstrated that preservation of the phrenic nerve in the immediate postoperative period preserved lung function by 3-5% but little is known about its long-term effects. We, therefore, decided to investigate the effect of temporary ipsilateral cervical phrenic nerve block on dynamic lung volumes in mid- to long-term pneumonectomy patients. METHODS We investigated 14 patients after a median of 9 years post pneumonectomy (range: 1-15 years). Lung function testing (spirometry) and fluoroscopic and/or sonographic assessment of diaphragmatic motion on the pneumonectomy side were performed before and after ultrasonographic-guided ipsilateral cervical phrenic nerve block by infiltration with lidocaine. RESULTS Ipsilateral phrenic nerve block was successfully achieved in 12 patients (86%). In the remaining 2 patients, diaphragmatic motion was already paradoxical before the nerve block. We found no significant difference on dynamic lung function values (FEV1 'before' 1.39 ± 0.44 vs FEV1 'after' 1.38 ± 0.40; P = 0.81). CONCLUSIONS Induction of a temporary diaphragmatic palsy did not significantly influence dynamic lung volumes in mid- to long-term pneumonectomy patients, suggesting that preservation of the phrenic nerve is of greater importance in the immediate postoperative period after pneumonectomy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Chromatin Accessibility Complex (CHRAC) consists of the ATPase ISWI, the large ACF1 subunit and a pair of small histone-like proteins, CHRAC-14/16. CHRAC is a prototypical nucleosome sliding factor that mobilizes nucleosomes to improve the regularity and integrity of the chromatin fiber. This may facilitate the formation of repressive chromatin. Expression of the signature subunit ACF1 is restricted during embryonic development, but remains high in primordial germ cells. Therefore, we explored roles for ACF1 during Drosophila oogenesis. ACF1 is expressed in somatic and germline cells, with notable enrichment in germline stem cells and oocytes. The asymmetrical localization of ACF1 to these cells depends on the transport of the Acf1 mRNA by the Bicaudal-D/Egalitarian complex. Loss of ACF1 function in the novel Acf1(7) allele leads to defective egg chambers and their elimination through apoptosis. In addition, we find a variety of unusual 16-cell cyst packaging phenotypes in the previously known Acf1(1) allele, with a striking prevalence of egg chambers with two functional oocytes at opposite poles. Surprisingly, we found that the Acf1(1) deletion - despite disruption of the Acf1 reading frame - expresses low levels of a PHD-bromodomain module from the C-terminus of ACF1 that becomes enriched in oocytes. Expression of this module from the Acf1 genomic locus leads to packaging defects in the absence of functional ACF1, suggesting competitive interactions with unknown target molecules. Remarkably, a two-fold overexpression of CHRAC (ACF1 and CHRAC-16) leads to increased apoptosis and packaging defects. Evidently, finely tuned CHRAC levels are required for proper oogenesis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Global change drivers are rapidly altering resource availability and biodiversity. While there is consensus that greater biodiversity increases the functioning of ecosystems, the extent to which biodiversity buffers ecosystem productivity in response to changes in resource availability remains unclear. We use data from 16 grassland experiments across North America and Europe that manipulated plant species richness and one of two essential resources—soil nutrients or water—to assess the direction and strength of the interaction between plant diversity and resource alteration on above-ground productivity and net biodiversity, complementarity, and selection effects. Despite strong increases in productivity with nutrient addition and decreases in productivity with drought, we found that resource alterations did not alter biodiversity–ecosystem functioning relationships. Our results suggest that these relationships are largely determined by increases in complementarity effects along plant species richness gradients. Although nutrient addition reduced complementarity effects at high diversity, this appears to be due to high biomass in monocultures under nutrient enrichment. Our results indicate that diversity and the complementarity of species are important regulators of grassland ecosystem productivity, regardless of changes in other drivers of ecosystem function.

Relevância:

80.00% 80.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador: