982 resultados para Mechanical Components


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The advance of drilling in deeper wells has required more thermostable materials. The use of synthetic fluids, which usually have a good chemical stability, faces the environmental constraints, besides it usually generate more discharge and require a costly disposal treatment of drilled cuttings, which are often not efficient and require mechanical components that hinder the operation. The adoption of aqueous fluids generally involves the use of chrome lignosulfonate, used as dispersant, which provides stability on rheological properties and fluid loss under high temperatures and pressures (HTHP). However, due to the environmental impact associated with the use of chrome compounds, the drilling industry needs alternatives that maintain the integrity of the property and ensure success of the operation in view of the strong influence of temperature on the viscosity of aqueous fluids and polymers used in these type fluids, often polysaccharides, passives of hydrolysis and biological degradation. Therefore, vinyl polymers were selected for this study because they have predominantly carbon chain and, in particular, polyvinylpyrrolidone (PVP) for resisting higher temperatures and partially hydrolyzed polyacrylamide (PHPA) and clay by increasing the system's viscosity. Moreover, the absence of acetal bonds reduces the sensitivity to attacks by bacteria. In order to develop an aqueous drilling fluid system for HTHP applications using PVP, HPAM and clay, as main constituents, fluid formulations were prepared and determined its rheological properties using rotary viscometer of the Fann, and volume filtrate obtained by filtration HTHP following the standard API 13B-2. The new fluid system using polyvinylpyrrolidone (PVP) with high molar weight had higher viscosities, gels and yield strength, due to the effect of flocculating clay. On the other hand, the low molecular weight PVP contributed to the formation of disperse systems with lower values in the rheological properties and fluid loss. Both systems are characterized by thermal stability gain up to around 120 ° C, keeping stable rheological parameters. The results were further corroborated through linear clay swelling tests.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The advance of drilling in deeper wells has required more thermostable materials. The use of synthetic fluids, which usually have a good chemical stability, faces the environmental constraints, besides it usually generate more discharge and require a costly disposal treatment of drilled cuttings, which are often not efficient and require mechanical components that hinder the operation. The adoption of aqueous fluids generally involves the use of chrome lignosulfonate, used as dispersant, which provides stability on rheological properties and fluid loss under high temperatures and pressures (HTHP). However, due to the environmental impact associated with the use of chrome compounds, the drilling industry needs alternatives that maintain the integrity of the property and ensure success of the operation in view of the strong influence of temperature on the viscosity of aqueous fluids and polymers used in these type fluids, often polysaccharides, passives of hydrolysis and biological degradation. Therefore, vinyl polymers were selected for this study because they have predominantly carbon chain and, in particular, polyvinylpyrrolidone (PVP) for resisting higher temperatures and partially hydrolyzed polyacrylamide (PHPA) and clay by increasing the system's viscosity. Moreover, the absence of acetal bonds reduces the sensitivity to attacks by bacteria. In order to develop an aqueous drilling fluid system for HTHP applications using PVP, HPAM and clay, as main constituents, fluid formulations were prepared and determined its rheological properties using rotary viscometer of the Fann, and volume filtrate obtained by filtration HTHP following the standard API 13B-2. The new fluid system using polyvinylpyrrolidone (PVP) with high molar weight had higher viscosities, gels and yield strength, due to the effect of flocculating clay. On the other hand, the low molecular weight PVP contributed to the formation of disperse systems with lower values in the rheological properties and fluid loss. Both systems are characterized by thermal stability gain up to around 120 ° C, keeping stable rheological parameters. The results were further corroborated through linear clay swelling tests.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O presente trabalho foi desenvolvido na empresa Renault CACIA e tem como fundamento a implementação de um fluxo de abastecimento com 4 horas de autonomia em todas as linhas de montagem no departamento de fabricação de componentes mecânicos. No entanto, estas linhas deverão ter condições para poder armazenar esse abastecimento, pelo que terão de ser implementadas estruturas que o suportem. Com o objetivo de eliminar o excesso de stock existente na linha de montagem de bombas de óleo, a mais crítica da instalação, e as atividades que não acrescentam valor ao produto final, organizar o espaço disponível, melhorar as condições ergonómicas, propõem-se soluções que serão uma mais-valia para as empresas de fabricação. Durante o desenvolvimento do trabalho foi realizado um estudo aprofundado da linha de montagem e dos problemas existentes no processo de abastecimento e, posteriormente, foi determinada a quantidade necessária de embalagens de componentes para a autonomia requerida. Recorreu-se à ferramenta CAD 3D, Solidworks®, para o planeamento das estruturas, e ao software de simulação Arena®, para testar o funcionamento da linha de montagem com a implementação das estruturas para abastecimento. Verificaram-se melhorias conseguidas através da implementação das soluções sugeridas. A linha de montagem ficou mais organizada e arrumada, tendo-se reduzido cerca de 86,96% de stock global existente. Associado a este, existiam atividades realizadas pelo operador de montagem que não acrescentavam valor ao produto final, tendo-se obtido um incremento da produção na ordem de 1%.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Na fabricação de componentes mecânicos precisos, que necessitam de alta resistência mecânica e ao desgaste, utiliza-se o processo de retificação, para conferir o acabamento final desejado e, também, para eliminar as deformações ocorridas durante a têmpera do aço. No entanto, as condições de retificação devem ser adequadas, para que não sejam introduzidas falhas na peça. Novos conceitos de lubrificação e refrigeração, para o processo de retificação, estão sendo pesquisados, de forma a diminuir os custos e os danos ambientais causados pelos fluidos de corte. Nesse trabalho, é analisada a influência das técnicas de mínima quantidade de lubrificante (MQL), refrigeração otimizada e refrigeração convencional, com diferentes vazões e velocidade de aplicação do fluido de corte, na qualidade das peças produzidas com aço ABNT 4340 endurecido, no processo de retificação cilíndrica externa de mergulho com a utilização de rebolos de CBN. O Aço ABNT 4340 apresenta várias aplicações industriais, sendo considerado de uso aeronáutico devido, sua alta resistência mecânica sem aumentar o peso dos componentes que o utilizam. A análise da qualidade das peças foi realizada com a verficação das rugosidades e com a análise de microscopias eletrônicas de varredura. Verificou-se, ainda, a força tangencial de corte. em relação às diferentes formas de aplicação do fluido de corte, notou-se o melhor desempenho da aplicação otimizada, para maiores velocidades, mostrando a eficiência do bocal utilizado. O processo otimizado e o processo MQL foram capazes de manter a integridade superficial das peças produzidas. Exceção somente para a condição MQL com vazão de fluido de corte de 40ml/h, que produziu trincas e queima superficial. Rebolos com baixa concentração de CBN, conseqüentemente mais baratos, proporcionaram bons resultados, quando associados com técnicas mais eficientes de aplicação de fluido de corte apresentando desgaste reduzido.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Most mechanical components experience multi-axial cyclic loading conditions during service. Experimental analysis of fatigue cracks under such conditions is not easy and most works tend to focus more on the simpler but less realistic case of uni-axial loading. Consequently, there are many uncertainties related to the load sequence effect that are now well known and are not normally incorporated into the growth models. The current work presents a new methodology for evaluating overload effect in biaxial fatigue cracks. The methodology includes evaluation of mixed-mode (KI and KII) stress intensity factor and the Crack Opening Displacement for samples with and without overload cycle under biaxial loading. The methodology is tested under a range of crack lengths. All crack-tip information is obtained with a hybrid methodology that combines experimental full-field digital image correlation data and Williams' elastic model describing the crack-tip field.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study reports the use of texture profile analysis (TPA) to mechanically characterize polymeric, pharmaceutical semisolids containing at least one bioadhesive polymer and to determine interactions between formulation components. The hardness, adhesiveness, force per unit time required for compression (compressibility), and elasticity of polymeric, pharmaceutical semisolids containing polycarbophil (1 or 5% w/w), polyvinylpyrrolidone (3 or 5% w/w), and hydroxyethylcellulose (3, 5, or 10% w/w) in phosphate buffer (pH 6.8) were determined using a texture analyzer in the TPA mode (compression depth 15 mm, compression rate 8 mm s(-1) 15 s delay period). Increasing concentrations of polycarbophil, poly vinylpyrrolidone, and hydroxyethylcellulose significantly increased product hardness, adhesiveness, and compressibility but decreased product elasticity. Statistically, interactions between polymeric formulation components were observed within the experimental design and were probably due to relative differences in the physical states of polyvinylpyrrolidone and polycarbophil in the formulations, i.e., dispersed/dissolved and unswollen/swollen, respectively. Increased product hardness and compressibility were possibly due to the effects of hydroxyethylcellulose, polyvinylpyrrolidone, and polycarbophil on the viscosity of the formulations. Increased adhesiveness was related to the concentration and, more importantly, to the physical state of polycarbophil. Decreased product elasticity was due to the increased semisolid nature of the product. TPA is a rapid, straightforward analytical technique that may be applied to the mechanical characterization of polymeric, pharmaceutical semisolids. It provides a convenient means to rapidly identify physicochemical interactions between formulation components. (C) 1996 John Wiley & Sons, Inc.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Silk fibres from different components of the Antheraea pernyi silkworm cocoon, namely peduncle, outer floss, and cocoon shells (outermost layer and pelade layer) were studied in detail to gain insights into the structure-property-function relationship. Among the fibres from different components, peduncle fibres are the softest with the largest viscoelastic lag, which may reduce the oscillation amplitude when a cocoon hangs on a twig. Fibres from the outermost layer are the toughest and have the largest breaking energy. Outer floss fibres have the highest content of sericin (about 11.98%) but their hardness and elasticity are intermediate. Pelade fibres are shape - preservable and stable with superior hardness and elasticity. The understanding of the properties of different silk fibres is essential for understanding their respective roles in the function of a silk cocoon and will also inspire new designs of protective materials under stringent environmental conditions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The removal of nonretrievable implant components represents a challenge in implant dentistry. The mechanical approach involves the risk of damaging the implant connection or the bone-to-implant interface. This case report describes a cryo-mechanical approach for the safe removal of a nonretrievable implant component. A patient had an implant surgically placed in a private practice. When the patient returned to the restorative dentist to make a definitive impression, the healing abutment could not be loosened. The patient was referred to the Division of Fixed Prosthodontics (University of Bern, Switzerland), where the stripped screw hole was enlarged with a special drill from a service kit of the implant provider. Although an extraction bolt was screwed into the opening and the torque ratchet was activated, the healing abutment would not loosen. A novel approach was attempted whereby the healing abutment was cooled with dry ice (CO2). The cooling effect seemingly caused shrinkage of the healing abutment and a reduction of the connection forces between the implant and the nonretrievable component. The approach of creating an access hole for the application of reverse torque via the extraction bolt in combination with the thermal effect led to the successful removal of the blocked component. Neither the implant connection nor the bone-to-implant interface was damaged. The combined cryo-mechanical procedure allowed the implant to be successfully restored.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Profiting by the increasing availability of laser sources delivering intensities above 109 W/cm2 with pulse energies in the range of several Joules and pulse widths in the range of nanoseconds, laser shock processing (LSP) is being consolidating as an effective technology for the improvement of surface mechanical and corrosion resistance properties of metals and is being developed as a practical process amenable to production engineering. The main acknowledged advantage of the laser shock processing technique consists on its capability of inducing a relatively deep compression residual stresses field into metallic alloy pieces allowing an improved mechanical behaviour, explicitly, the life improvement of the treated specimens against wear, crack growth and stress corrosion cracking. Following a short description of the theoretical/computational and experimental methods developed by the authors for the predictive assessment and experimental implementation of LSP treatments, experimental results on the residual stress profiles and associated surface properties modification successfully reached in typical materials (specifically Al and Ti alloys) under different LSP irradiation conditions are presented. In particular, the analysis of the residual stress profiles obtained under different irradiation parameters and the evaluation of the corresponding induced surface properties as roughness and wear resistance are presented.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Outline: • Introduction • Process Experimental Setup • Experimental Procedure • Experimental Results for Al2024-T351 and Ti6Al4V - Residual stresses - Tensile Strength - Fatigue Life • Discussion and Outlook - Prospects for technological applications of LSP