655 resultados para McManus
Resumo:
A comprehensive simulation of solidification/melting processes requires the simultaneous representation of free surface fluid flow, heat transfer, phase change, non-linear solid mechanics and, possibly, electromagnetics together with their interactions in what is now referred to as "multi-physics" simulation. A 3D computational procedure and software tool, PHYSICA, embedding the above multi-physics models using finite volume methods on unstructured meshes (FV-UM) has been developed. Multi-physics simulations are extremely compute intensive and a strategy to parallelise such codes has, therefore, been developed. This strategy has been applied to PHYSICA and evaluated on a range of challenging multi-physics problems drawn from actual industrial cases.
Resumo:
We consider the load-balancing problems which arise from parallel scientific codes containing multiple computational phases, or loops over subsets of the data, which are separated by global synchronisation points. We motivate, derive and describe the implementation of an approach which we refer to as the multiphase mesh partitioning strategy to address such issues. The technique is tested on example meshes containing multiple computational phases and it is demonstrated that our method can achieve high quality partitions where a standard mesh partitioning approach fails.
Resumo:
The needs for various forms of information systems relating to the European environment and ecosystem are reviewed, and limitations indicated. Existing information systems are reviewed and compared in terms of aims and functionalities. We consider TWO technical challenges involved in attempting to develop an IEEICS. First, there is the challenge of developing an Internet-based communication system which allows fluent access to information stored in a range of distributed databases. Some of the currently available solutions are considered, i.e. Web service federations. The second main challenge arises from the fact that there is general intra-national heterogeneity in the definitions adopted, and the measurement systems used throughout the nations of Europe. Integrated strategies are needed.
Resumo:
This work proceeds from the assumption that a European environmental information and communication system (EEICS) is already established. In the context of primary users (land-use planners, conservationists, and environmental researchers) we ask what use may be made of the EEICS for building models and tools which is of use in building decision support systems for the land-use planner. The complex task facing the next generation of environmental and forest modellers is described, and a range of relevant modelling approaches are reviewed. These include visualization and GIS; statistical tabulation and database SQL, MDA and OLAP methods. The major problem of noncomparability of the definitions and measures of forest area and timber volume is introduced and the possibility of a model-based solution is considered. The possibility of using an ambitious and challenging biogeochemical modelling approach to understanding and managing European forests sustainably is discussed. It is emphasised that all modern methodological disciplines must be brought to bear, and a heuristic hybrid modelling approach should be used so as to ensure that the benefits of practical empirical modelling approaches are utilised in addition to the scientifically well-founded and holistic ecosystem and environmental modelling. The data and information system required is likely to end up as a grid-based-framework because of the heavy use of computationally intensive model-based facilities.
Resumo:
A comprehensive solution of solidification/melting processes requires the simultaneous representation of free surface fluid flow, heat transfer, phase change, nonlinear solid mechanics and, possibly, electromagnetics together with their interactions, in what is now known as multiphysics simulation. Such simulations are computationally intensive and the implementation of solution strategies for multiphysics calculations must embed their effective parallelization. For some years, together with our collaborators, we have been involved in the development of numerical software tools for multiphysics modeling on parallel cluster systems. This research has involved a combination of algorithmic procedures, parallel strategies and tools, plus the design of a computational modeling software environment and its deployment in a range of real world applications. One output from this research is the three-dimensional parallel multiphysics code, PHYSICA. In this paper we report on an assessment of its parallel scalability on a range of increasingly complex models drawn from actual industrial problems, on three contemporary parallel cluster systems.
Resumo:
Electrodeposition is a widely used technique for the fabrication of high aspect ratio microstructures. In recent years, much research has been focused within this area aiming to understand the physics behind the filling of high aspect ratio vias and trenches on substrates and in particular how they can be made without the formation of voids in the deposited material. This paper reports on the fundamental work towards the advancement of numerical algorithms that can predict the electrodeposition process in micron scaled features. Two different numerical approaches have been developed, which capture the motion of the deposition interface and 2-D simulations are presented for both methods under two deposition regimes: those where surface kinetics is governed by Ohm’s law and the Butler–Volmer equation, respectively. In the last part of this paper the modelling of acoustic forces and their subsequent impact on the deposition profile through convection is examined.
Resumo:
Sustainable development depends on maintaining ecosystem services which are concentrated in coastal marine and estuarine ecosystems. Analyses of the science needed to manage human uses of ecosystem services have concentrated on terrestrial ecosystems. Our focus is on the provision of multidisciplinary data needed to inform adaptive, ecosystem-based approaches (EBAs) for maintaining coastal ecosystem services based on comparative ecosystem analyses. Key indicators of pressures on coastal ecosystems, ecosystem states and the impacts of changes in states on services are identified for monitoring and analysis at a global coastal network of sentinel sites nested in the ocean-climate observing system. Biodiversity is targeted as the “master” indicator because of its importance to a broad spectrum of services. Ultimately, successful implementation of EBAs will depend on establishing integrated, holistic approaches to ocean governance that oversee the development of integrated, operational ocean observing systems based on the data and information requirements specified by a broad spectrum of stakeholders for sustainable development. Sustained engagement of such a spectrum of stakeholders on a global scale is not feasible. The global coastal network will need to be customized locally and regionally based on priorities established by stakeholders in their respective regions. The E.U. Marine Strategy Framework Directive and the U.S. Recommendations of the Interagency Ocean Policy Task Force are important examples of emerging regional scale approaches. The effectiveness of these policies will depend on the co-evolution of ocean policy and the observing system under the auspices of integrated ocean governance.
Resumo:
Ecosystem-based approaches (EBAs) to managing anthropogenic pressures on ecosystems, adapting to changes in ecosystem states (indicators of ecosystem health), and mitigating the impacts of state changes on ecosystem services are needed for sustainable development. EBAs are informed by integrated ecosystem assessments (IEAs) that must be compiled and updated frequently for EBAs to be effective. Frequently updated IEAs depend on the sustained provision of data and information on pressures, state changes, and impacts of state changes on services. Nowhere is this truer than in the coastal zone, where people and ecosystem services are concentrated and where anthropogenic pressures converge. This study identifies the essential indicator variables required for the sustained provision of frequently updated IEAs, and offers an approach to establishing a global network of coastal observations within the framework of the Global Ocean Observing System. The need for and challenges of capacity-building are highlighted, and examples are given of current programmes that could contribute to the implementation of a coastal ocean observing system of systems on a global scale. This illustrates the need for new approaches to ocean governance that can achieve coordinated integration of existing programmes and technologies as a first step towards this goal.