986 resultados para Matrix Methods
Resumo:
This is the first in a series of three articles which aimed to derive the matrix elements of the U(2n) generators in a multishell spin-orbit basis. This is a basis appropriate to many-electron systems which have a natural partitioning of the orbital space and where also spin-dependent terms are included in the Hamiltonian. The method is based on a new spin-dependent unitary group approach to the many-electron correlation problem due to Gould and Paldus [M. D. Gould and J. Paldus, J. Chem. Phys. 92, 7394, (1990)]. In this approach, the matrix elements of the U(2n) generators in the U(n) x U(2)-adapted electronic Gelfand basis are determined by the matrix elements of a single Ll(n) adjoint tensor operator called the del-operator, denoted by Delta(j)(i) (1 less than or equal to i, j less than or equal to n). Delta or del is a polynomial of degree two in the U(n) matrix E = [E-j(i)]. The approach of Gould and Paldus is based on the transformation properties of the U(2n) generators as an adjoint tensor operator of U(n) x U(2) and application of the Wigner-Eckart theorem. Hence, to generalize this approach, we need to obtain formulas for the complete set of adjoint coupling coefficients for the two-shell composite Gelfand-Paldus basis. The nonzero shift coefficients are uniquely determined and may he evaluated by the methods of Gould et al. [see the above reference]. In this article, we define zero-shift adjoint coupling coefficients for the two-shell composite Gelfand-Paldus basis which are appropriate to the many-electron problem. By definition, these are proportional to the corresponding two-shell del-operator matrix elements, and it is shown that the Racah factorization lemma applies. Formulas for these coefficients are then obtained by application of the Racah factorization lemma. The zero-shift adjoint reduced Wigner coefficients required for this procedure are evaluated first. All these coefficients are needed later for the multishell case, which leads directly to the two-shell del-operator matrix elements. Finally, we discuss an application to charge and spin densities in a two-shell molecular system. (C) 1998 John Wiley & Sons.
Resumo:
This is the third and final article in a series directed toward the evaluation of the U(2n) generator matrix elements (MEs) in a multishell spin/orbit basis. Such a basis is required for many-electron systems possessing a partitioned orbital space and where spin-dependence is important. The approach taken is based on the transformation properties of the U(2n) generators as an adjoint tensor operator of U(n) x U(2) and application of the Wigner-Eckart theorem. A complete set of adjoint coupling coefficients for the two-shell composite Gelfand-Paldus basis (which is appropriate to the many-electron problem) were obtained in the first and second articles of this series. Ln the first article we defined zero-shift coupling coefficients. These are proportional to the corresponding two-shell del-operator matrix elements. See P. J. Burton and and M. D. Gould, J. Chem. Phys., 104, 5112 (1996), for a discussion of the del-operator and its properties. Ln the second article of the series, the nonzero shift coupling coefficients were derived. Having obtained all the necessary coefficients, we now apply the formalism developed above to obtain the U(2n) generator MEs in a multishell spin-orbit basis. The methods used are based on the work of Gould et al. (see the above reference). (C) 1998 John Wiley & Sons, Inc.
Resumo:
Expokit provides a set of routines aimed at computing matrix exponentials. More precisely, it computes either a small matrix exponential in full, the action of a large sparse matrix exponential on an operand vector, or the solution of a system of linear ODEs with constant inhomogeneity. The backbone of the sparse routines consists of matrix-free Krylov subspace projection methods (Arnoldi and Lanczos processes), and that is why the toolkit is capable of coping with sparse matrices of large dimension. The software handles real and complex matrices and provides specific routines for symmetric and Hermitian matrices. The computation of matrix exponentials is a numerical issue of critical importance in the area of Markov chains and furthermore, the computed solution is subject to probabilistic constraints. In addition to addressing general matrix exponentials, a distinct attention is assigned to the computation of transient states of Markov chains.
Resumo:
Krylov subspace techniques have been shown to yield robust methods for the numerical computation of large sparse matrix exponentials and especially the transient solutions of Markov Chains. The attractiveness of these methods results from the fact that they allow us to compute the action of a matrix exponential operator on an operand vector without having to compute, explicitly, the matrix exponential in isolation. In this paper we compare a Krylov-based method with some of the current approaches used for computing transient solutions of Markov chains. After a brief synthesis of the features of the methods used, wide-ranging numerical comparisons are performed on a power challenge array supercomputer on three different models. (C) 1999 Elsevier Science B.V. All rights reserved.AMS Classification: 65F99; 65L05; 65U05.
Resumo:
This paper describes the preparation and application of a novel bioanode for use in ethanol/O(2) biofuel cells based upon immobilization of alcohol dehydrogenase (ADH) and polyamidoamine (PAMAM) dendrimers onto carbon cloth platforms. The power density measurements indicated a direct relationship between the amount of anchored ADH and the anode power values, which increased upon enzyme loading. The power density values ranged from 0.04 to 0.28 mW cm(-2), and the highest power density was achieved with the bioanode prepared with 28 U of ADH, which provided a power density of 0.28 mW cm(-2) at 0.3 V. The latter power output values were the maximum observed, even for higher enzyme concentrations. Stability of the bioanodes was quite satisfactory, since there was no appreciable reduction of enzymatic activity during the measurements. The method of bioanode preparation described here has proven to be very effective. The PAMAM dendrimer represents a friendly environment for the immobilization of enzymes, and it is stable and capable of generating high power density compared to other immobilization methods. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Background. Clinical and pathologic examinations cannot always provide a prognosis for patients with medullary thyroid carcinoma. Membrane type 1 matrix metalloproteinase (MT1-MMP) can act directly on carcinogenesis and takes part in 1 of the processes of metalloproteinase 2 activation, an enzyme related to prognostic impairment of patients with such tumor. Methods. Thirty-five patients who were submitted to surgery were followed up for an average of 74 months, Postoperative and final medical conditions were characterized for comparison with MT1-MMP immunostainings, performed in surgical paraffin blocks. A value of p < .05 was considered statistically significant. Results. Proposed index (association of proportion and intensity of immunostaining) and proportion of immunostained cells in primary specimens were correlated with cure or persistence after initial operations (p = .0216 and p = .0098, respectively). Conclusion. MT1-MMP immunostaining in primary tumor specimens is a new and complementary prognostic predictor in patients with medullary thyroid carcinomas. (C) 2009 Wiley Periodicals, Inc. Head Neck 32: 58-67, 2010
Resumo:
We consider algorithms for computing the Smith normal form of integer matrices. A variety of different strategies have been proposed, primarily aimed at avoiding the major obstacle that occurs in such computations-explosive growth in size of intermediate entries. We present a new algorithm with excellent performance. We investigate the complexity of such computations, indicating relationships with NP-complete problems. We also describe new heuristics which perform well in practice. Wie present experimental evidence which shows our algorithm outperforming previous methods. (C) 1997 Academic Press Limited.
Resumo:
Background: Smooth muscle content is increased within the airway wall in patients with asthma and is likely to play a role in airway hyperresponsiveness. However, smooth muscle cells express several contractile and structural proteins, and each of these proteins may influence airway function distinctly. Objective: We examined the expression of contractile and structural proteins of smooth muscle cells, as well as extracellular matrix proteins, in bronchial biopsies of patients with asthma, and related these to lung function, airway hyperresponsiveness, and responses to deep inspiration. Methods: Thirteen patients with asthma (mild persistent, atopic, nonsmoking) participated in this cross-sectional study. FEV1 % predicted, PC20 methacholine, and resistance of the respiratory system by the forced oscillation technique during tidal breathing and deep breath were measured. Within 1 week, a bronchoscopy was performed to obtain 6 bronchial biopsies that were immunuhistochemically stained for alpha-SM-actin, desmin, myosin light chain kinase (MLCK), myosin, calponin, vimentin, elastin, type III collagen, and fibronectin. The level of expression was determined by automated densitometry. Results: PC20 methacholine was inversely related to the expression of alpha-smooth muscle actin (r = -0.62), desmin (r = -0.56), and elastin (r = -0.78). In addition, FEV1% predicted was positively related and deep inspiration-induced bronchodilation inversely related to desmin (r = -0.60), MLCK (r = -0.60), and calponin (r = -0.54) expression. Conclusion: Airway hyperresponsiveness, FEV1% predicted, and airway responses to deep inspiration are associated with selective expression of airway smooth muscle proteins and components of the extracellular matrix.
Resumo:
Objective: Prostate cancer (PCa) is the most frequent tumor in males in Brazil. Single nucleotide polymorphisms (SNP) have been demonstrated in the promoter region of matrix metalloproteinases (MMPs) genes and have been associated with development and progression of some cancers. In this study, our aim was to investigate a possible relation between polymorphism of the promoter region of the MMP2 gene and classical prognostic parameters in prostate cancer. Materials and methods: Genomic DNA was extracted using conventional protocols. The DNA sequence containing the polymorphic site was amplified by real-time polymerase chain reaction, using fluorescent probes (TaqMan). Results: In patients with tumors of a higher stage (pT3), a polymorphic allele in the MMP2 gene was more frequent (P = 0.026) than in patients with lower tumor stage. A polymorphic allele in the MMP2 gene was more frequent in Gleason >= 7 than in Gleason <= 6 (P = 0.042). Conclusions: We conclude that MMP2 polymorphism can be used together with pathological stage and Gleason score to identify patients with worse prognosis. Our results illustrate the potential use of MMP2 SNP as a molecular marker for prostate cancer. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Purpose: Prostate cancer is the most common tumor in males in Brazil. Single nucleotide polymorphisms have been demonstrated to exist in the promoter regions of matrix metalloproteinase genes and they are associated with the development and progression of some cancers. We investigated the correlation between MMP1, 2, 7 and 9 polymorphisms with susceptibility to prostate cancer, and classic prognostic parameters of prostate cancer. Materials and Methods: Genomic DNA was extracted using conventional protocols. The DNA sequence containing the polymorphic site was amplified by realtime polymerase chain reaction using TaqMan (R) fluorescent probes. Results: For the MMP1 gene the polymorphic allele was more common in the control group than in the prostate cancer group (p <0.001). For the MMP9 gene the incidence of the polymorphic homozygote genotype was higher in the prostate cancer group (p <0.001). For higher stage tumors (pT3) a polymorphic allele in the MMP2 gene was more common (p = 0.026). When considering Gleason score, the polymorphic homozygote genotype of MMP9 was more common in Gleason 6 or less tumors (p = 0.003), while a polymorphic allele in the MMP2 gene was more common in Gleason 7 or greater tumors (p = 0.042). Conclusions: MMP1 and MMP2 may protect against prostate cancer development and MMP9 may be related to higher risk. In contrast, MMP9 polymorphism was associated with a lower Gleason score and MMP2 polymorphism was associated with nonorgan confined disease.
Resumo:
This in vivo study evaluated the osteogenic potential of two proteins, recombinant human bone morphogenetic protein-2 (rhBMP-2) and a protein extracted from natural latex (Hevea brasiliensis, P-1), and compared their effects on bone defects when combined with a carrier or a collagen gelatin. Eighty-four (84) Wistar rats were divided into two groups, with and without the use of collagen gelatin, and each of these were divided into six treatment groups of seven animals each. The treatment groups were: (1) 5 mu g of pure rhBMP-2; (2) 5 mu g of rhBMP-2/monoolein gel; (3) pure monoolein gel; (4) 5 mu g of pure P-1; (5) 5 mu g of P-1/monoolein gel; (6) critical bone defect control. The animals were anesthetized and a 6 mm diameter critical bone defect was made in the left posterior region of the parietal bone. Animals were submitted to intracardiac perfusion after 4 weeks and the calvaria tissue was removed for histomorphometric analysis. In this experimental study, it was concluded that rhBMP-2 allowed greater new bone formation than P-1 protein and this process was more effective when the bone defect was covered with collagen gelatin (P < 0.05). Anat Rec, 293:794-801, 2010. (C) 2010 Wiley-Liss, Inc.
Resumo:
The immunopathologic and inflammatory mechanisms involved in periodontal disease (PD) include the participation of host resident, inflammatory cells and chemical mediators. Metalloproteinases (MMPs) and nitric oxide (NO) play essential role in extracellular matrix turnover of periodontal tissue destruction. In this study, by means of RT-PCR through semi-quantitative densitometric scanning methods, the expression of MMPs -2 and -9 and inducible NO synthase (iNOS) was temporally and spatially investigated during the destructive mechanisms of experimentally induced PD in rats. Samples from different periods were microscopically analyzed and compared with the contralateral side (control). Our results showed significant expression of MMP-9 and iNOS in tissues affected by PD, as compared with controls, three days after PD induction, simultaneously with the beginning of alveolar bone loss. At 7 days post induction, only the MMP-9 mRNA presented a significantly higher expression, as compared with the respective controls. Thus, in the rat ligature-induced PD, MMP-9 and iNOS might importantly participate in the early stages of the disease, including inflammatory cell migration, tissue destruction and alveolar bone resorption. Also, we may suggest that the exuberant presence of PMNs may be related to the important expression of iNOS and MMP-9 found at 3 days post induction.
Resumo:
Introduction: Fibrinolyis is one of the first line therapies in high risk pulmonary embolism (PE) according to current guidelines. Previous studies showed that brinolytic therapy with tPA (tissue plasminogen activator, or alteplase) upregulates the concentrations of matrix metalloproteinases (MMPs) and contributes to hemorrhagic transformation after cardioembolic stroke. However, no previous study has described the circulating MMPs levels following fibrinolysis for acute PE. Materials and Methods: We serially measured the circulating levels of MMPs (MMP-9 and MMP-2) and their endogenous inhibitors, the tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2 in alteplase and in streptokinase-treated patients with acute PE by gelatin zymography and by enzyme-linked immunosorbent assays, respectively. Results: We found that therapy of PE streptokinase or with alteplase is associated increased pro-MMP-9, but not MMP-2, concentrations for up to 24 hours, whereas no significant changes were found in TIMP-1 or TIMP-2 concentrations. This alteration returned to normal 3 to 5 days after thrombolysis. This is the first study reporting on MMPs alterations following fibrinolysis for acute PE. Conclusions: We found transient increases in circulating pro-MMP-9 levels following fibrinolysis for acute PE. Our findings support the hypothesis that increased MMP-9 levels may underlie the risk of intracerebral hemorrhage or other bleeding complication of thrombolysis for acute PE, and the use of MMP inhibitors may decrease such risk. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Background: Enhanced cardiac matrix metalloproteinase activity (MMPs) has been associated with ventricular remodeling and cardiac dysfunction. It is unknown whether MMPs contribute to systolic/diastolic dysfunction and compensatory remodeling in 2-kidney, 1-clip (2K1C) hypertensive rats. To test this hypothesis, we used 2K1C rats after 2 weeks of surgery treated or not with a nonspecific inhibitor of MMPs (doxycycline). Methods and Results: We found that blood pressure and +/-dP/dt increased in 2K1C rats compared with sham groups, and these parameters were attenuated by doxycycline treatment (P < .05). Doxycycline also reversed cardiac hypertrophy observed in 2K1C rats (P < .05). Hypertensive rats showed increased MMP-2 levels in zymograms and in the tissue by immunofluorescence (P < .05) compared with sham groups. Increased total gelatinolytic activity was observed in untreated 2K1C rats when compared with sham groups (P < .05). Doxycycline decreased total gelatinolytic activity in 2K1C rats to control levels (P < .05). Conclusion: An imbalance in gelatinolytic activity, with increased MMP-2 levels and activity underlies the development of morphological and functional alterations found in the compensatory hypertrophy observed in 2K1C hearts. Because function and structure were restored by doxycycline, the inhibition of MMPs or their modulation may provide beneficial effects for therapeutic intervention in cardiac hypertrophy. (J Cardiac Fail 2010;16:599-608)
Resumo:
Background: Abnormal production of matrix metalloproteinases (MMPs), especially MMP-9, may play a role in hypertensive disorders of pregnancy. These alterations may result from functional genetic polymorphisms in the promoter region of MMP-9 gene, which are known to change MMP-9 expression. We examined whether 2 MMP-9 polymorphisms (C(-) (1562) T and (CA)n) and haplotypes are associated with preeclampsia and/or gestational hypertension. Methods: We studied 476 pregnant women: 176 healthy pregnant (HP), 146 pregnant with gestational hypertension (GH), and 154 pregnant with preeclampsia (PE). Genomic DNA was extracted from whole blood and genotypes for C(- 1562) T and (CA)n polymorphisms were determined by PCR-RFLP. Haplotype frequencies were inferred using the PHASE ver. 2.1 program. Results: For the g.-90(CA)13-25 polymorphism, no significant differences were found in genotype and allele distributions when PE or GH groups were compared with HP group. However, the CT genotype and T allele for g.-1562C>T polymorphism were more commonly found in GH subjects compared with the HP group (both P<0.05). Conversely, we found no differences in genotypes or allele distributions for the g.-1562C>T polymorphism when the PE and the HP groups were compared. No significant differences were found in overall distributions of haplotype frequencies when the GH or the PE group was compared with the HP group. Conclusions: The C(- 1562) T polymorphism in MMP-9 gene is associated with gestational hypertension, but not with preeclampsia. These findings may help to explain the higher plasma MMP-9 levels previously reported in GH compared with HP. (C) 2010 Elsevier B.V. All rights reserved.