947 resultados para Mating type genes


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fission yeast rad22+, a homologue of budding yeast RAD52, encodes a double-strand break repair component, which is dispensable for proliferation. We, however, have recently obtained a cell division cycle mutant with a temperature-sensitive allele of rad22+, designated rad22-H6, which resulted from a point mutation in the conserved coding sequence leading to one amino acid alteration. We have subsequently isolated rad22+ and its novel homologue rti1+ as multicopy suppressors of this mutant. rti1+ suppresses all the defects of cells lacking rad22+. Mating type switch-inactive heterothallic cells lacking either rad22+ or rti1+ are viable, but those lacking both genes are inviable and arrest proliferation with a cell division cycle phenotype. At the nonpermissive temperature, a synchronous culture of rad22-H6 cells performs DNA synthesis without delay and arrests with chromosomes seemingly intact and replication completed and with a high level of tyrosine-phosphorylated Cdc2. However, rad22-H6 cells show a typical S phase arrest phenotype if combined with the rad1-1 checkpoint mutation. rad22+ genetically interacts with rad11+, which encodes the large subunit of replication protein A. Deletion of rad22+/rti1+ or the presence of rad22-H6 mutation decreases the restriction temperature of rad11-A1 cells by 4–6°C and leads to cell cycle arrest with chromosomes incompletely replicated. Thus, in fission yeast a double-strand break repair component is required for a certain step of chromosome replication unlinked to repair, partly via interacting with replication protein A.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The trithorax gene family contains members implicated in the control of transcription, development, chromosome structure, and human leukemia. A feature shared by some family members, and by other proteins that function in chromatin-mediated transcriptional regulation, is the presence of a 130- to 140-amino acid motif dubbed the SET or Tromo domain. Here we present analysis of SET1, a yeast member of the trithorax gene family that was identified by sequence inspection to encode a 1080-amino acid protein with a C-terminal SET domain. In addition to its SET domain, which is 40–50% identical to those previously characterized, SET1 also shares dispersed but significant similarity to Drosophila and human trithorax homologues. To understand SET1 function(s), we created a null mutant. Mutant strains, although viable, are defective in transcriptional silencing of the silent mating-type loci and telomeres. The telomeric silencing defect is rescued not only by full-length episomal SET1 but also by the conserved SET domain of SET1. set1 mutant strains display other phenotypes including morphological abnormalities, stationary phase defects, and growth and sporulation defects. Candidate genes that may interact with SET1 include those with functions in transcription, growth, and cell cycle control. These data suggest that yeast SET1, like its SET domain counterparts in other organisms, functions in diverse biological processes including transcription and chromatin structure.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cryptococcus neoformans STE12α, a homologue of Saccharomyces cerevisiae STE12, exists only in MATα strains. We identified another STE12 homologue, STE12a, which is MATa specific. As in the case with Δste12α, the mating efficiency for Δste12a was reduced significantly. The Δste12a strains surprisingly still mated with Δste12α strains. In MATα strains, STE12a functionally complemented STE12α for mating efficacy, haploid fruiting, and regulation of capsule size in the mouse brain. Furthermore, when STE12a was replaced with two copies of STE12α, the resulting MATa strain produced hyphae on filament agar. STE12a regulates mRNA levels of several genes that are important for virulence including CNLAC1 and CAP genes. STE12a also modulates enzyme activities of phospholipase and superoxide dismutase. Importantly, deletion of STE12a markedly reduced the virulence in mice, as is the case with STE12α. Brain smears of mice infected with the Δste12a strain showed yeast cells with a considerable reduction in capsule size compared with those infected with STE12a strains. When the disrupted locus of ste12a was replaced with a wild-type STE12a gene, both in vivo and in vitro mutant phenotypes were reversed. These results suggest that STE12a and STE12α have similar functions, and that the mating type of the cells influences the alleles to exert their biological effects. C. neoformans, thus, is the first fungal species that contains a mating-type-specific STE12 homologue in each mating type. Our results demonstrate that mating-type-specific genes are not only important for saprobic reproduction but also play an important role for survival of the organism in host tissue.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In ciliate protists, sex involves the temporary joining of two cells of compatible mating type, followed by meiosis and exchange of gametic nuclei between conjugants. Reproduction is by asexual binary fission following conjugation. For the many ciliates with fixed multiple mating types, frequency-dependent sex-ratio theory predicts equal frequencies of mating types, if sex is common in nature. Here, we report that in natural populations of Tetrahymena thermophila sexually immature cells, indicative of recent conjugation, are found from spring through fall. In addition, the seven mating types occur in approximately equal frequencies, and these frequencies appear to be maintained by interaction between complex, multiple mat alleles and environmental conditions during conjugation. Such genotype-environment interaction determining mating type frequency is rare among ciliates.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A marker database was compiled for isolates of the potato and tomato late blight pathogen, Phytophthora infestans, originating from 41 locations which include 31 countries plus 10 regions within Mexico. Presently, the database contains information on 1,776 isolates for one or more of the following markers: restriction fragment length polymorphism (RFLP) fingerprint consisting of 23 bands; mating type; dilocus allozyme genotype; mitochondrial DNA haplotype; sensitivity to the fungicide metalaxyl; and virulence. In the database, 305 entries have unique RFLP fingerprints and 258 entries have unique multilocus genotypes based on RFLP fingerprint, dilocus allozyme genotype, and mating type. A nomenclature is described for naming multilocus genotypes based on the International Organization for Standardization (ISO) two-letter country code and a unique number, Forty-two previously published multilocus genotypes are represented in the database with references to publications. As a result of compilation of the database, seven new genotypes were identified and named. Cluster analysis of genotypes from clonally propagated populations worldwide generally confirmed a previously published classification of old and new genotypes. Genotypes from geographically distant countries were frequently clustered, and several old and new genotypes were found in two or more distant countries. The cluster analysis also demonstrated that A2 genotypes from Argentina differed from all others. The database is available via the Internet, and thus can serve as a resource for Phytophthora workers worldwide.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Phytophthora cinnamomi isolates from South Africa and Australia were compared to assess genetic differentiation between the two populations. These two populations were analysed for levels of phenotypic diversity using random amplified polymorphic DNAs (RAPDs) and gene and genotypic diversity using restriction fragment length polymorphisms (RFLPs). Sixteen RAPD markers from four decanucleotide Operon primers and 34 RFLP alleles from 15 putative loci were used. A few isolates from Papua New Guinea known to posses alleles different from Australian isolates were also included for comparative purposes. South African and Australian P. cinnamomi populations were almost identical with an extremely low level of genetic distance between them (D-m = 0.003). Common features for the two populations include shared alleles, low levels of phenotypic/genotypic diversity, high clonality, and low observed and expected levels of heterozygosity. Furthermore, relatively high levels of genetic differentiation between mating type populations (D-m South Africa = 0.020 and D-m Australia = 0.025 respectively), negative fixation indices, and significant deviations from Hardy-Weinberg equilibrium, all provided evidence for the lack of frequent sexual reproduction in both populations. The data strongly suggest that both the South African and Australian P. cinnamomi populations are introduced.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Phytophthora cinnamomi isolates collected from 1977 to 1986 and 1991 to 1993 in two regions in South Africa were analyzed using isozymes. A total of 135 isolates was analyzed for 14 enzymes representing 20 putative loci, of which four were polymorphic. This led to the identification of nine different multilocus isozyme genotypes. Both mating types of P. cinnamomi occurred commonly in the Cape region, whereas, predominantly, the A2 mating type occurred in the Mpumalanga region of South Africa. A2 mating type isolates could be resolved into seven multilocus isozyme genotypes, compared with only two multilocus isozyme genotypes for the A1 mating type isolates. Low levels of gene (0.115) and genotypic (2.4%) diversity and a low number of alleles per locus (1.43) were observed for the South African P. cinnamomi population. The genetic distance between the Cape and Mpumalanga P. cinnamomi populations was relatively low (D-m = 0.165), and no specific pattern in regional distribution of multilocus isozyme genotypes could be observed. The genetic distance between the ''old'' (isolated between 1977 and 1986) and ''new'' (isolated between 1991 and 1993) P. cinnamomi populations from the Cape was low (D-m = 0.164), indicating a stable population over time. Three of the nine multilocus isozyme genotypes were specific to the ''old'' population, and only one multilocus isozyme genotype was specific to the ''new'' population. Significant differences in allele frequencies, a high genetic distance (D-m = 0.581) between the Cape A1 and A2 mating type isolates, significant deviations from Hardy-Weinberg equilibrium, a low overall level of heterozygosity, and a high fixation index (0.71) all indicate that sexual reproduction occurs rarely, if at all, in the South African P. cinnamomi population.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ganoderma boninense was determined to be heterothallic and tetrapolar with multiple alleles at both mating type loci. Mycelial interactions amongst siblings were assessed to determine if closely related isolates of G. boninense exhibited vegetative incompatibility. Interactions amongst monokaryotic and dikaryotic mycelia generally grouped into four categories ranging from strong antagonism to the absence of antagonism. Pairing of dikaryotic mycelia always resulted in antagonism and the degree of antagonism generally correlated with the relatedness of the isolates. Genetically different dikaryons therefore constitute discrete individuals. This is the first report of such interactions in G. boninense and these findings provide the basis for further studies on natural populations of this species.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ganoderma boninense (the causal agent of basal stem rot of oil palm in Papua New Guinea) has a tetrapolar mating system with multiple alleles. Investigations into the population structure of G. boninense, using interfertility between isolates as a marker, revealed that the population on oil palm was comprised predominantly of genetically distinct individuals, although a number of isolates were found to share single mating alleles. No direct hereditary relationship was found between isolates on neighbouring or spatially separated diseased palms, indicating that outcrossing had probably occurred over several generations in the founder population prior to colonization of oil palm. In this study, a total of 81 A and 83 B mating type alleles (factors) were detected with 18 allelic repeats at the A locus and 17 at the B locus. Alleles appeared to be randomly dispersed throughout the population in each study block, although there was a significantly (P

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cryptococcus neoformans is the major cause of fungal meningitis, a potentially lethal mycosis. Bird excreta can be considered a significant environmental reservoir of this species in urban areas, thirty-three samples of pigeon excreta were collected within the city of Vitoria, Brazil. Cryptococcus neoformans was isolated and identified using standard biochemical assays in ten samples. PCR amplification with primer M13 and orotidine monophosphate pyrophosphorylase (URA5) gene-restriction fragment length polymorphism (RFLP) analysis discerned serotypes and genotypes within this species. All isolates were serotype A (C. neoformans var. grubii) and genotype VNI. The two alternative alleles a and α at the mating type locus were determined by PCR amplification and mating assays performed on V8 medium. All isolates were MAT α mating type but only 50% were able to mate in vitro with the opposite mating type MAT a tester strains (JEC20, KN99a and Bt63). This study adds information on the ecology and molecular characterization of C. neoformans in the Southeast region of Brazil.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The mutualistic symbiosis involving Glomeromycota, a distinctive phylum of early diverging Fungi, is widely hypothesized to have promoted the evolution of land plants during the middle Paleozoic. These arbuscular mycorrhizal fungi (AMF) perform vital functions in the phosphorus cycle that are fundamental to sustainable crop plant productivity. The unusual biological features of AMF have long fascinated evolutionary biologists. The coenocytic hyphae host a community of hundreds of nuclei and reproduce clonally through large multinucleated spores. It has been suggested that the AMF maintain a stable assemblage of several different genomes during the life cycle, but this genomic organization has been questioned. Here we introduce the 153-Mb haploid genome of Rhizophagus irregularis and its repertoire of 28,232 genes. The observed low level of genome polymorphism (0.43 SNP per kb) is not consistent with the occurrence of multiple, highly diverged genomes. The expansion of mating-related genes suggests the existence of cryptic sex-related processes. A comparison of gene categories confirms that R. irregularis is close to the Mucoromycotina. The AMF obligate biotrophy is not explained by genome erosion or any related loss of metabolic complexity in central metabolism, but is marked by a lack of genes encoding plant cell wall-degrading enzymes and of genes involved in toxin and thiamine synthesis. A battery of mycorrhiza-induced secreted proteins is expressed in symbiotic tissues. The present comprehensive repertoire of R. irregularis genes provides a basis for future research on symbiosis-related mechanisms in Glomeromycota.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

How cells polarize in response to external cues is a fundamental biological problem. For mating, yeast cells orient growth toward the source of a pheromone gradient produced by cells of the opposite mating type. Polarized growth depends on the small GTPase Cdc42, a central eukaryotic polarity regulator that controls signaling, cytoskeleton polarization, and vesicle trafficking. However, the mechanisms of polarity establishment and mate selection in complex cellular environments are poorly understood. Here we show that, in fission yeast, low-level pheromone signaling promotes a novel polarization state, where active Cdc42, its GEF Scd1, and scaffold Scd2 form colocalizing dynamic zones that sample the periphery of the cell. Two direct Cdc42 effectors--actin cables marked by myosin V Myo52 and the exocyst complex labeled by Sec6 and Sec8--also dynamically colocalize with active Cdc42. However, these cells do not grow due to a block in the exocytosis of cell wall synthases Bgs1 and Bgs4. High-level pheromone stabilizes active Cdc42 zones and promotes cell wall synthase exocytosis and polarized growth. However, in the absence of prior low-level pheromone signaling, exploration fails, and cells polarize growth at cell poles by default. Consequently, these cells show altered partner choice, mating preferentially with sister rather than nonsister cells. Thus, Cdc42 exploration serves to orient growth for partner selection. This process may also promote genetic diversification.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Self-incompatibility (SI), a reproductive system broadly present in plants, chordates, fungi, and protists, might be controlled by one or several multiallelic loci. How a transition in the number of SI loci can occur and the consequences of such events for the population's genetics and dynamics have not been studied theoretically. Here, we provide analytical descriptions of two transition mechanisms: linkage of the two SI loci (scenario 1) and the loss of function of one incompatibility gene within a mating type of a population with two SI loci (scenario 2). We show that invasion of populations by the new mating type form depends on whether the fitness of the new type is lowered, and on the allelic diversity of the SI loci and the recombination between the two SI loci in the starting population. Moreover, under scenario 1, it also depends on the frequency of the SI alleles that became linked. We demonstrate that, following invasion, complete transitions in the reproductive system occurs under scenario 2 and is predicted only for small populations under scenario 1. Interestingly, such events are associated with a drastic reduction in mating type number.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Using genetically matched azole-susceptible (AS) and azole-resistant (AR) clinical isolates of Candida albicans, we recently demonstrated that CDR1 overexpression in AR isolates is due to its enhanced transcriptional activation and mRNA stability. This study examines the molecular mechanisms underlying enhanced CDR1 mRNA stability in AR isolates. Mapping of the 3' untranslated region (3' UTR) of CDR1 revealed that it was rich in adenylate/uridylate (AU) elements, possessed heterogeneous polyadenylation sites, and had putative consensus sequences for RNA-binding proteins. Swapping of heterologous and chimeric lacZ-CDR1 3' UTR transcriptional reporter fusion constructs did not alter the reporter activity in AS and AR isolates, indicating that cis-acting sequences within the CDR1 3' UTR itself are not sufficient to confer the observed differential mRNA decay. Interestingly, the poly(A) tail of the CDR1 mRNA of AR isolates was approximately 35-50 % hyperadenylated as compared with AS isolates. C. albicans poly(A) polymerase (PAP1), responsible for mRNA adenylation, resides on chromosome 5 in close proximity to the mating type-like (MTL) locus. Two different PAP1 alleles, PAP1-a/PAP1-alpha, were recovered from AS (MTL-a/MTL-alpha), while a single type of PAP1 allele (PAP1-alpha) was recovered from AR isolates (MTL-alpha/MTL-alpha). Among the heterozygous deletions of PAP1-a (Deltapap1-a/PAP1-alpha) and PAP1-alpha (PAP1-a/Deltapap1-alpha), only the former led to relatively enhanced drug resistance, to polyadenylation and to transcript stability of CDR1 in the AS isolate. This suggests a dominant negative role of PAP1-a in CDR1 transcript polyadenylation and stability. Taken together, our study provides the first evidence, to our knowledge, that loss of heterozygosity at the PAP1 locus is linked to hyperadenylation and subsequent increased stability of CDR1 transcripts, thus contributing to enhanced drug resistance.