1000 resultados para Materials compostos -- Propietats mecàniques
Resumo:
Two of the drawbacks of using natural-based composites in industrial applications are thermal instability and water uptake capacity. In this work, mechanical wood pulp was used to reinforce polypropylene at a level of 20 to 50 wt. %. Composites were mixed by means of a Brabender internal mixer for both non-coupled and coupled formulations. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) were used to determine the thermal properties of the composites. The water uptake behavior was evaluated by immersion of the composites in water until an equilibrium state was reached. Results of water absorption tests revealed that the amount of water absorption was clearly dependent upon the fiber content. The coupled composites showed lower water absorption compared to the uncoupled composites. The incorporation of mechanical wood pulp into the polypropylene matrix produced a clear nucleating effect by increasing the crystallinity degree of the polymer and also increasing the temperature of polymer degradation. The maximum degradation temperature for stone ground wood pulp–reinforced composites was in the range of 330 to 345 ºC
Resumo:
The main objective of this study was to explore the suitability of Vitis vinifera as a raw material and alkaline lignin as a natural binder for fiberboard manufacturing. In the first step, Vitis vinifera was steam- exploded through a thermo-mechanical vapor process in a batch reactor, and the obtained pulp was dried, ground, and pressed to produce the boards. The effects of pretreatment factors and pressing conditions on the chemical composition of the fibers and the physico-mechanical properties of binderless fiberboards were evaluated, and the conditions that optimize these properties were found. A response surface method based on a central composite design and multiple-response optimization was used. The variables studied and their respective variation ranges were: pretreatment temperature (Tr: 190-210ºC), pretreatment time (tr: 5-10 min), pressing temperature (Tp: 190-210ºC), pressing pressure (Pp: 8-16MPa), and pressing time (tp: 3-7min). The results of the optimization step show that binderless fiberboards have good water resistance and weaker mechanical properties. In the second step, fiberboards based on alkaline lignin and Vitis vinifera pulp produced at the optimal conditions determined for binderless fiberboards were prepared and their physico-mechanical properties were tested. Our results show that the addition of about 15% alkaline lignin leads to the production of fiberboards that fully meet the requirements of the relevant standard specifications
Resumo:
The behavior of stone groundwood / polypropylene injection-molded composites was evaluated with and without coupling agent. Stone groundwood (SGW) is a fibrous material commonly prepared in a high yield process and mainly used for papermaking applications. In this work, the use of SGW fibers was explored as a reinforcing element of polypropylene (PP) composites. The surface charge density of the composite components was evaluated, as well as the fiber’s length and diameter inside the composite material. Two mixing extrusion processes were evaluated, and the use of a kinetic mixer, instead of an internal mixer, resulted in longer mean fiber lengths of the reinforcing fibers. On the other hand, the accessibility of surface hydroxyl groups of stone groundwood fibers was improved by treating the fibers with 5% of sodium hydroxide, resulting in a noticeable increase of the tensile strength of the composites, for a similar percentage of coupling agent. A new parameter called Fiber Tensile Strength Factor is defined and used as a baseline for the comparison of the properties of the different composite materials. Finally the competitiveness of stone groundwood / polypropylene / polypropylene-co-maleic anhydride system, which compared favorably to sized glass-fiber / polypropylene GF/PP and glass-fiber / polypropylene / polypropylene-co-maleic anhydride composite formulations, was quantified by means of the fiber tensile strength factor
Resumo:
Two alloys, Fe80Nb10B10 and Fe70Ni14Zr6B10, were produced by mechanical alloying. The formation of thenanocrystallites (about 7-8 nm at 80h MA) was detected by X-ray diffraction. After milling for 80 h, differentialscanning calorimetry scans show low-temperature recovery processes and several crystallization processes related with crystal growth and reordering of crystalline phases. The apparent activation energy values are 315 ± 40 kJ mol–1 for alloy A, and 295 ± 20 kJ mol–1 and 320 ± 25 kJ mol–1 for alloy B. Furthermore, a melt-spun Fe-based ribbon was mechanically alloyed to obtain a powdered-like alloy. The increase of the rotation speed and the ball-to-powderweight ratio reduces the necessary time to obtain the powdered form
Resumo:
Fully biodegradable composite materials were obtained through reinforcement of a commercially available thermoplastic starch (TPS) matrix with rapeseed fibers (RSF). The influence of reinforcement content on the water sorption capacity, as well as thermal and thermo-mechanical properties of composites were evaluated. Even though the hydrophilic character of natural fibers tends to favor the absorption of water, results demonstrated that the incorporation of RSF did not have a significant effect on the water uptake of the composites. DSC experiments showed that fibers restricted the mobility of the starch macromolecules from the TPS matrix, hence reducing their capacity to crystallize. The viscoelastic behaviour of TPS was also affected, and reinforced materials presented lower viscous deformation and recovery capacity. In addition, the elasticity of materials was considerably diminished when increasing fiber content, as evidenced in the TMA and DMTA measurements
Resumo:
Algunes nanotècniques recents permeten la manipulació de biomolècules i cèl·lules en escala nanomètrica amb la mesura simultània de la força aplicada amb resolució de piconewtons. Aquestes escales de desplaçament i força, i la possibilitat de treballar en medi líquid, fan que siguin eines molt útils per a l'estudi de les propietats mecàniques de molècules i cèl·lules individuals en condicions fisiològiques. Entre les tècniques més utilitzades es troben el microscopi de força atòmica, les trampes de làser i les microesferes magnètiques. En aquest treball es descriuen els principis de funcionament d'aquestes tècniques en aplicacions biològiques i, en particular, en l'estudi de la mecànica molecular i cel·lular.
Resumo:
Co-Ti-Sn-Ge substituted M-type bariumhexaferrite powders with mean grain sizes between about 10 nm and about 1 ¿m and a narrow size distribution were prepared reproducibly by means of a modified glass crystallization method. At annealing temperatures between 560 and 580°C of the amorphous flakes nanocrystalline particles grow. They behave superparamagnetically at room temperature and change into stable magnetic single domains at lower temperatures. The magnetic volume of the powders is considerably less than the geometric one. However, the effective anisotropy fields are larger by a Factor of two to three.
Resumo:
En el presente trabajo se estudian los efectos introducidos por la implantación de Nitrógeno atómico y Silicio sobre probetas de policarbonato empleadas para usos ópticos. Distintas dosis de Nitrógeno y Silicio fueron implantadas de cara a poner de manifiesto el efecto de la dosis sobre las propiedades ópticas y mecánicas. Se llevaron a cabo ensayos mecánicos de microdureza, nanodureza, y AFM, así como ensayos ópticos de Reflexión-absorción IR y Transmitancia UV-VIS. Los resultados muestran un endurecimiento superficial para las implantaciones a dosis altas de Nitrógeno, así como cambios considerables en los espectros de transmitancia.
Resumo:
Intensive numerical studies of exact ground states of the two-dimensional ferromagnetic random field Ising model at T=0, with a Gaussian distribution of fields, are presented. Standard finite size scaling analysis of the data suggests the existence of a transition at ¿c=0.64±0.08. Results are compared with existing theories and with the study of metastable avalanches in the same model.