981 resultados para Material cerámico
Resumo:
The need for development of new materials is a natural process in the companies’ technological point of view, seeking improvements in materials and processes. Specifically, among the materials, ceramic exhibit valuable properties, especially the covalent ceramics which have excellent properties for applications which requires the abrasion resistance, hardness, high temperatures, resistence, etc. being a material that has applications in several areas. Most studies are related to improvement of properties, specially fracture toughness that allows the expansion of its application. Among the most promising ceramic materials are silicon nitride (Si3N4) which has excellent properties. The goal of this work was the development and caracterization of Si3N4-based ceramics, doped with yttrium oxide (Y2O3), rar earth concentrate (CTR2O3) and cerium oxide (CeO2) in the same proportion for the evaluation of properties. The powders' mixtures were homogenized, dried and compressed under pressure uniaxial and isostatic. Sintering was carried out in 1850 ⁰C under pressure of 0,1MPa N2 for 1 h with a heating rate of 25 ⁰C / min and cooling in the furnace inertia. The characterizations were performed using Archimedes principle to relative density, weight loss by measuring before and after sintering, phase analysis by X-ray diffraction, microstructure by scanning electron microscope (SEM), hardness and fracture toughness by the method Vickers indentation. The results obtained showed relative density of 97-98%, Vickers hardness 17 to 19 GPa, fracture toughness 5.6 to 6.8 MPa.m1/2, with phases varying from α-SiAlON and β-Si3N4 depending the types of additives used. The results are promising for tribological applications and can be defined according to the types of additives to be used
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
A percepção e o alcance da excelência estética traduzem-se especialmente em saber interpretar e satisfazer os anseios dos pacientes, empregando-se para isso todo o conhecimento disponível na literatura científica. No tratamento com laminados cerâmicos, a ciência fornece parâmetros para nos guiar com relação a um correto diagnóstico, planejamento seguro, técnica adequada e material mais indicado; porém, a subjetividade estética pode estar escondida nas entrelinhas da ciência. Contudo, o objetivo deste artigo é descrever um protocolo para fechamento de múltiplos diastemas, salientando a técnica empregada, bem como o material cerâmico utilizado e suas peculiaridades, implícitas dentro de um contexto estético específico.
Resumo:
Machining processes are one of the most important manufacturing processes in the modern world. In these processes, there are many elements which will influence in the final result of the machined part. Among them, the tools are the principal factor of the rising cost, because its global influence on the process. In aeronautical industries, this can be more evidenced due the need to machining several alloys, between them, aluminum alloys. These alloys have to demonstrate a specific surface finishing to be used in aircraft's fuselage. This kind of industry is one of the segments which is still rising in Brazil, and they are looking viable alternatives in the manufacturing processes of materials, due the need to produce more and more parts and equipment, with costs increasingly reduced. The purpose of this project is the development of a ceramic with differentiated properties. The ceramics were developed using a pre-sintering at 1200 °C, with posterior sintering at 1600°C, and subjected to dry turning process on aluminum alloy 6005. The characterizations showed that ceramics presented with toughness on the center of 1700 MPa and on the surface of 1950 MPa, density 98,5 ±0,14. g/cm³. Ceramics were grinded and faceted, according to ISO standard 1832, and subjected to turning tests in a ROMI lathe brand, model GL240M, using cutting speeds of 500, 800 and 1000 m/min with different feed rates. The machining results showed low occurrence of flank wear to all cutting speeds, and better surface finishing average values of Ra = 0,4935 μm and Rt = 8,112 μm. In general, it could be seen that the tool presents important potential to machining 6005 alloy, and that the use of correct parameters can decrease and/or eliminate subsequent processes, providing important reductions in costs related to the machining processes
Resumo:
Machining processes are one of the most important manufacturing processes in the modern world. In these processes, there are many elements which will influence in the final result of the machined part. Among them, the tools are the principal factor of the rising cost, because its global influence on the process. In aeronautical industries, this can be more evidenced due the need to machining several alloys, between them, aluminum alloys. These alloys have to demonstrate a specific surface finishing to be used in aircraft's fuselage. This kind of industry is one of the segments which is still rising in Brazil, and they are looking viable alternatives in the manufacturing processes of materials, due the need to produce more and more parts and equipment, with costs increasingly reduced. The purpose of this project is the development of a ceramic with differentiated properties. The ceramics were developed using a pre-sintering at 1200 °C, with posterior sintering at 1600°C, and subjected to dry turning process on aluminum alloy 6005. The characterizations showed that ceramics presented with toughness on the center of 1700 MPa and on the surface of 1950 MPa, density 98,5 ±0,14. g/cm³. Ceramics were grinded and faceted, according to ISO standard 1832, and subjected to turning tests in a ROMI lathe brand, model GL240M, using cutting speeds of 500, 800 and 1000 m/min with different feed rates. The machining results showed low occurrence of flank wear to all cutting speeds, and better surface finishing average values of Ra = 0,4935 μm and Rt = 8,112 μm. In general, it could be seen that the tool presents important potential to machining 6005 alloy, and that the use of correct parameters can decrease and/or eliminate subsequent processes, providing important reductions in costs related to the machining processes
Resumo:
This work presents a new ceramic material obtained through the incorporation of solid waste from the steel industry and known as dedusting powder PAE - in ceramic formulations based on clay, potassium and sodium feldspars, kaolin and talc. Formulations were prepared with ceramic residue levels of 0% (basic mass - MB), 2%, 4% and 8%, subjected to firing at temperatures of 1000 ° C, 1050ºC, 1100ºC and 1150ºC for periods of 15 min. and 120 min. The physicchemical and mechanical properties of these ceramic formulations were determined based on the firing temperature, residence time in the oven and the percentage of waste. Since the physicochemical and mechanical properties of the sintered materials were evaluated by chemical analysis techniques (fluorescence X-rays - FRX), particle size distribution, specific surface area, apparent density, structural analysis by diffraction of X-rays (DRX) and characterization of surface by scanning electron microscopy (SEM). The magnetic response characteristics and the pattern of magnetic ferrites of the samples were analyzed in the assay conditions, having noticed that the saturation magnetic susceptibility depend on the sintering temperature of the material and it is associated with its crystal structure. From the analysis results, it was concluded that the ceramic material with better physical and mechanical properties is obtained when the 8% from PAE residue is added to standard formulation under the burn time of 15 minutes and temperature of 1150ºC.
Resumo:
This work shows that the synthesis by combustion is a prominent alternative to obtain ceramic powders of higher oxides, nanostructured and of high purity, as the ferrites of formulas Co(1-x)Zn(x)Fe2O4 e Ni(1-x)Zn(x)Fe2O4 with x ranging from 0.2 mols, in a range from 0.2 ≤ x ≥ 1.0 mol, that presents magnetic properties in coexistence of ferroelectric and ferrimagnetic states, which can be used in antennas of micro tapes and selective surfaces of low frequency in a range of miniaturized microwaves, without performance loss. The obtainment occurred through the combustion process, followed by appropriate physical processes and ordered to the utilization of the substrate sinterization process, it gave us a ceramic material, of high purity degree in a nanometric scale. The Vibrating Sample Magnetometer (VSM) analysis showed that those ferritic materials presents parameters, as materials hysteresis, that have own behavior of magnetic materials of good quality, in which the magnetization states can be suddenly changed with a relatively small variation of the field intensity, having large applications on the electronics field. The X-ray Diffraction (XRD) analysis of the ceramic powders synthesized at 900 °C, characterize its structural and geometrical properties, the crystallite size and the interplanar spacing. Other analysis were developed, as Scanning Electron Microscopy (SEM), X-ray Fluorescence (XRF), electric permittivity and the tangent loss, in high frequencies, through the equipment ZVB - 14 Vector Network Analyzer 10 MHz-14 GHz, of ROHDE & SCHWART.
Resumo:
Brazil is a country in development, rich in natural resources. In order to grow sustainably, it is necessary to Brazil to preserve its environment, which is an expressive challenge, especially to industries, such as those producing ceramic materials. This study was developed using Porcelain Tile Polishing Residue (RPP) in blends with soil to build compacted fills. This residue is a slurry generated during the polishing process of porcelain tiles and contains powdery material from the polished tile, the abrasives used during the process and cooling water. The RPP was collected from a private company located in Conde/PB and it was mixed with a sandy-clayey soil, to build the fills. Laboratorial tests were conducted with pure soil, pure RPP and blends in proportions of 5%, 10%, 15% and 20% of RPP in addition to the dry mass of pure soil. The Chemical and Physical Characterization tests performed were: specific solid weight, grain size distribution, laser analysis of grain size distribution, Atterberg limits, X ray fluorescence, X ray diffraction, scanning electron microscopy and soil compaction,. The materials and blends were also compacted and direct shear tests and plate load tests were performed. Plate load tests were conducted using a circular plate with 30 cm diameter, on specimens of pure soil and 5% blend, compacted in a metallic box inside the Soil Mechanics Laboratory of the Federal University of Rio Grande do Norte, Brazil. Both mechanical tests performed were conducted under inundated conditions, willing to reduce the influence of soil suction. An evaluation of the results of the tests performed shows that RPP is a fine material, with grain size distribution smaller than 0,015mm, composed mainly of silica and alumina, and particles in angular shape. The soil was characterized as a clayey sand, geologically known as a lateritic soil, with high percentages of alumina and iron oxide, and particles with rounded shape. Both the Soil and the blends presented low plasticity, while the residue showed a medium plasticity. Direct shear tests showed that the addition of RPP did not cause major changes into blends’ friction angle data, however, it was possible to note that, for the proportions studied, that is a tendency of obtain lower shear stresses for higher percentages of RPP in the blends. Both pure soil and 5% mixture showed a punching disruption for the Plate load test. For this same test, the allowable stress for 5% mixture was 44% higher than the pure soil, and smaller vertical settlement results for all stresses.
Resumo:
Brazil is a country in development, rich in natural resources. In order to grow sustainably, it is necessary to Brazil to preserve its environment, which is an expressive challenge, especially to industries, such as those producing ceramic materials. This study was developed using Porcelain Tile Polishing Residue (RPP) in blends with soil to build compacted fills. This residue is a slurry generated during the polishing process of porcelain tiles and contains powdery material from the polished tile, the abrasives used during the process and cooling water. The RPP was collected from a private company located in Conde/PB and it was mixed with a sandy-clayey soil, to build the fills. Laboratorial tests were conducted with pure soil, pure RPP and blends in proportions of 5%, 10%, 15% and 20% of RPP in addition to the dry mass of pure soil. The Chemical and Physical Characterization tests performed were: specific solid weight, grain size distribution, laser analysis of grain size distribution, Atterberg limits, X ray fluorescence, X ray diffraction, scanning electron microscopy and soil compaction,. The materials and blends were also compacted and direct shear tests and plate load tests were performed. Plate load tests were conducted using a circular plate with 30 cm diameter, on specimens of pure soil and 5% blend, compacted in a metallic box inside the Soil Mechanics Laboratory of the Federal University of Rio Grande do Norte, Brazil. Both mechanical tests performed were conducted under inundated conditions, willing to reduce the influence of soil suction. An evaluation of the results of the tests performed shows that RPP is a fine material, with grain size distribution smaller than 0,015mm, composed mainly of silica and alumina, and particles in angular shape. The soil was characterized as a clayey sand, geologically known as a lateritic soil, with high percentages of alumina and iron oxide, and particles with rounded shape. Both the Soil and the blends presented low plasticity, while the residue showed a medium plasticity. Direct shear tests showed that the addition of RPP did not cause major changes into blends’ friction angle data, however, it was possible to note that, for the proportions studied, that is a tendency of obtain lower shear stresses for higher percentages of RPP in the blends. Both pure soil and 5% mixture showed a punching disruption for the Plate load test. For this same test, the allowable stress for 5% mixture was 44% higher than the pure soil, and smaller vertical settlement results for all stresses.
Resumo:
La reafirmación del modelo político-administrativo ciudadano tras la fase arcaica colonial abre una nueva etapa de prosperidad en la antigua fundación tiria. El esplendor de Gadir en el s. V a.C. se refleja en los textos clásicos y en los hallazgos arqueológicos y, sin embargo, nuestros conocimientos sobre el desarrollo histórico de la ciudad de época púnica son muy limitados. El horizonte arcaico comienza a esclarecerse tras los hallazgos del Teatro Cómico que han sacado a la luz los restos de la fundación tiria y, sin embargo, la ciudad posterior continúa siendo una gran incógnita. ¿A qué lugar se traslada la población una vez que se abandona el asentamiento primitivo? ¿Quiénes son los individuos enterrados en los excepcionales sarcófagos antropoides? ¿Qué relación jerárquica existe entre el asentamiento insular y los situados en tierra firme? ¿Qué papel jugó la industria y comercialización de las salazones? Los interrogantes planteados son múltiples y no hacen más que evidenciar la incapacidad del paradigma tradicional para explicar el desarrollo histórico de la Gadir postcolonial y la necesidad de buscar nuevos modelos interpretativos.
Resumo:
Este artículo presenta un estudio sobre la economía en el proceso de maquinado para minimizar los costos por unidad y maximizar la velocidad de producción. Se analizaron tres materiales típicos en las herramientas de corte: acero de alta velocidad,carburo cementado y cerámico. Se encontró que las herramientas de material cerámico poseen menor costo por unidad y menor duración del ciclo que las herramientas de carburo cementado y que las herramientas de acero rápido. Las herramientas desechables presentaron menor tiempo por ciclo y menor costo por pieza que las herramientas reafilables.
Resumo:
Esta tesis ha tomado los caracteres de un trabajo técnico, artístico y estadístico sobre el brocal de pozo andalusí y mudéjar, mediante un estudio de investigación y una práctica de campo, en el que se destaca la evolución de este objeto en al-Andalus desde el siglo X hasta aproximadamente el siglo XVI. El brocal se convirtió, al estar emplazado en estancias principales del patio de edificios religiosos o de viviendas islámicas, en el soporte y el marco idóneo de una rica y compleja decoración, y sus gruesas paredes también permitieron un mayor desarrollo y una mejor ejecución de textos epigráficos, que han sido en algunos casos concretos de gran relevancia a nivel histórico y artístico. Antes de la época islámica, el brocal, aparecía como una pieza escasa, en la mayoría de los casos elaborado con un material noble para cubrir pozos de agua sagrada en edificios grandes de carácter religioso. Posteriormente, fue un objeto muy frecuente en sus ejemplares andalusíes y mudéjares, utilizado en todo tipo de edificios públicos y privados, ejecutado en materiales nobles, como el mármol o la piedra caliza y en materiales comunes y baratos como el barro. En los brocales resulta a veces muy difícil determinar con precisión la fecha concreta de su elaboración, teniendo únicamente como referencia las características físicas del mismo, ya que este objeto ha estado bajo una enorme influencia…….. tanto anterior como posterior al período estudiado. El estudio presenta datos globales sobre cronología, procedencia, terminología, tipología, materiales, técnicas de elaboración, procedimientos de motivos decorativos y un análisis minucioso de éstos, permitiéndonos tener una raíz sólida que apoye el estudio preciso de cada brocal, siguiendo estrictamente en todos los casos una misma metodología. La investigación incluye un total de ciento nueve piezas, nueve brocales en material pétreo y cien ejemplos de material cerámico. Ante el número considerable de ejemplos estudiados, hemos decidido ordenar las fichas catalográficas en siete apartados, apareciendo así los brocales de material pétreo, seguidos de los de material cerámico, divididos éstos a su vez en circunscripciones territoriales, guardando siempre un orden cronológico dentro de cada apartado...
Resumo:
This work had to verify the influence of massará, while mortar component, in the process of formation of saltpeter in cementitious plaster walls of buildings. The massará is a ceramic material, texture areno usually found in large volumes argillaceous sediments in Teresina, Piaui State capital, which is associated with the Portland cement mortar form for fixing and finishing in construction. Saltpeter or flowering is a pathology that happens in gypsum wallboard, which invariably reaction between soluble salts present in materials, water and oxygen. This pathology, supposedly credited to massará caused its use to suffer significant reduction in the market of the buildings. Verify this situation with particular scientific rigor is part of the proposal of this work. Grading tests Were performed, consistency limits (LL, LP and IP), determination of potential hydrogen, capacity Exchange (CTC), electrical conductivity (EC), x-ray fluorescence (FRX) and x-ray diffraction (DRX). Massará analysed samples in number six, including sample plastering salitrado presented potential hydrogen medium 5.7 in water and 5.2 on KCl n and electrical conductivity (EC), equal to zero. These results pointed to the affirmative that massará is a material that does not provide salinity content that can be taken into consideration. It is therefore concluded that the material analyzed not competing, at least with respect to the presence of soluble salts, for the formation of saltpeter
Desenvolvimento de bloco de vedação com barita na composição de partida para blindagem de radiação X
Resumo:
This work main objective is to study the use of bricks in barium X-rays rooms in order to contribute to the optimization of shielding rooms diagnosis. The work was based on experimental measurements of X-ray attenuation (40 to 150 kV), using ceramic seal bearing the incorporation of barium sulfat (BaSO4). Different formulations were studied in three different firing temperatures and evaluated for incorporation in the ceramic body. The composition of 20% of barite processed at a temperature of 950 ° C showed better physical and mechanical properties, is considered the most suitable for the purpose of this work. Were produced bricks sealing composition formulated based on that presented the best technological features. These blocks were tested physically as a building material and wall protective barrier. Properties such as visual, deviation from the square, face flatness, water absorption and compressive strength were evaluated for all the blocks produced. The behavior of this material as attenuator for X-rays was investigated by experimental results which take into account mortar manufacturers barium through the different strains and compared with the reference material (Pb). The simulation results indicated that the ceramic block barium shows excellent properties of attenuation equivalence lead taking into account the energy used in diagnostic X-ray