1000 resultados para Matemàtica aplicada
Resumo:
Functional Data Analysis (FDA) deals with samples where a whole function is observedfor each individual. A particular case of FDA is when the observed functions are densityfunctions, that are also an example of infinite dimensional compositional data. In thiswork we compare several methods for dimensionality reduction for this particular typeof data: functional principal components analysis (PCA) with or without a previousdata transformation and multidimensional scaling (MDS) for diferent inter-densitiesdistances, one of them taking into account the compositional nature of density functions. The difeerent methods are applied to both artificial and real data (householdsincome distributions)
Resumo:
Many multivariate methods that are apparently distinct can be linked by introducing oneor more parameters in their definition. Methods that can be linked in this way arecorrespondence analysis, unweighted or weighted logratio analysis (the latter alsoknown as "spectral mapping"), nonsymmetric correspondence analysis, principalcomponent analysis (with and without logarithmic transformation of the data) andmultidimensional scaling. In this presentation I will show how several of thesemethods, which are frequently used in compositional data analysis, may be linkedthrough parametrizations such as power transformations, linear transformations andconvex linear combinations. Since the methods of interest here all lead to visual mapsof data, a "movie" can be made where where the linking parameter is allowed to vary insmall steps: the results are recalculated "frame by frame" and one can see the smoothchange from one method to another. Several of these "movies" will be shown, giving adeeper insight into the similarities and differences between these methods
Resumo:
The preceding two editions of CoDaWork included talks on the possible considerationof densities as infinite compositions: Egozcue and D´ıaz-Barrero (2003) extended theEuclidean structure of the simplex to a Hilbert space structure of the set of densitieswithin a bounded interval, and van den Boogaart (2005) generalized this to the setof densities bounded by an arbitrary reference density. From the many variations ofthe Hilbert structures available, we work with three cases. For bounded variables, abasis derived from Legendre polynomials is used. For variables with a lower bound, westandardize them with respect to an exponential distribution and express their densitiesas coordinates in a basis derived from Laguerre polynomials. Finally, for unboundedvariables, a normal distribution is used as reference, and coordinates are obtained withrespect to a Hermite-polynomials-based basis.To get the coordinates, several approaches can be considered. A numerical accuracyproblem occurs if one estimates the coordinates directly by using discretized scalarproducts. Thus we propose to use a weighted linear regression approach, where all k-order polynomials are used as predictand variables and weights are proportional to thereference density. Finally, for the case of 2-order Hermite polinomials (normal reference)and 1-order Laguerre polinomials (exponential), one can also derive the coordinatesfrom their relationships to the classical mean and variance.Apart of these theoretical issues, this contribution focuses on the application of thistheory to two main problems in sedimentary geology: the comparison of several grainsize distributions, and the comparison among different rocks of the empirical distribution of a property measured on a batch of individual grains from the same rock orsediment, like their composition
Resumo:
In this paper we examine the problem of compositional data from a different startingpoint. Chemical compositional data, as used in provenance studies on archaeologicalmaterials, will be approached from the measurement theory. The results will show, in avery intuitive way that chemical data can only be treated by using the approachdeveloped for compositional data. It will be shown that compositional data analysis is aparticular case in projective geometry, when the projective coordinates are in thepositive orthant, and they have the properties of logarithmic interval metrics. Moreover,it will be shown that this approach can be extended to a very large number ofapplications, including shape analysis. This will be exemplified with a case study inarchitecture of Early Christian churches dated back to the 5th-7th centuries AD
Resumo:
A novel metric comparison of the appendicular skeleton (fore and hind limb) ofdifferent vertebrates using the Compositional Data Analysis (CDA) methodologicalapproach it’s presented.355 specimens belonging in various taxa of Dinosauria (Sauropodomorpha, Theropoda,Ornithischia and Aves) and Mammalia (Prothotheria, Metatheria and Eutheria) wereanalyzed with CDA.A special focus has been put on Sauropodomorpha dinosaurs and the Aitchinsondistance has been used as a measure of disparity in limb elements proportions to infersome aspects of functional morphology
Resumo:
Factor analysis as frequent technique for multivariate data inspection is widely used also for compositional data analysis. The usual way is to use a centered logratio (clr)transformation to obtain the random vector y of dimension D. The factor model istheny = Λf + e (1)with the factors f of dimension k & D, the error term e, and the loadings matrix Λ.Using the usual model assumptions (see, e.g., Basilevsky, 1994), the factor analysismodel (1) can be written asCov(y) = ΛΛT + ψ (2)where ψ = Cov(e) has a diagonal form. The diagonal elements of ψ as well as theloadings matrix Λ are estimated from an estimation of Cov(y).Given observed clr transformed data Y as realizations of the random vectory. Outliers or deviations from the idealized model assumptions of factor analysiscan severely effect the parameter estimation. As a way out, robust estimation ofthe covariance matrix of Y will lead to robust estimates of Λ and ψ in (2), seePison et al. (2003). Well known robust covariance estimators with good statisticalproperties, like the MCD or the S-estimators (see, e.g. Maronna et al., 2006), relyon a full-rank data matrix Y which is not the case for clr transformed data (see,e.g., Aitchison, 1986).The isometric logratio (ilr) transformation (Egozcue et al., 2003) solves thissingularity problem. The data matrix Y is transformed to a matrix Z by usingan orthonormal basis of lower dimension. Using the ilr transformed data, a robustcovariance matrix C(Z) can be estimated. The result can be back-transformed tothe clr space byC(Y ) = V C(Z)V Twhere the matrix V with orthonormal columns comes from the relation betweenthe clr and the ilr transformation. Now the parameters in the model (2) can beestimated (Basilevsky, 1994) and the results have a direct interpretation since thelinks to the original variables are still preserved.The above procedure will be applied to data from geochemistry. Our specialinterest is on comparing the results with those of Reimann et al. (2002) for the Kolaproject data
Resumo:
Observations in daily practice are sometimes registered as positive values larger then a given threshold α. The sample space is in this case the interval (α,+∞), α & 0, which can be structured as a real Euclidean space in different ways. This fact opens the door to alternative statistical models depending not only on the assumed distribution function, but also on the metric which is considered as appropriate, i.e. the way differences are measured, and thus variability
Resumo:
We take stock of the present position of compositional data analysis, of what has beenachieved in the last 20 years, and then make suggestions as to what may be sensibleavenues of future research. We take an uncompromisingly applied mathematical view,that the challenge of solving practical problems should motivate our theoreticalresearch; and that any new theory should be thoroughly investigated to see if it mayprovide answers to previously abandoned practical considerations. Indeed a main themeof this lecture will be to demonstrate this applied mathematical approach by a number ofchallenging examples
Resumo:
This paper is a first draft of the principle of statistical modelling on coordinates. Several causes —which would be long to detail—have led to this situation close to the deadline for submitting papers to CODAWORK’03. The main of them is the fast development of the approach along thelast months, which let appear previous drafts as obsolete. The present paper contains the essential parts of the state of the art of this approach from my point of view. I would like to acknowledge many clarifying discussions with the group of people working in this field in Girona, Barcelona, Carrick Castle, Firenze, Berlin, G¨ottingen, and Freiberg. They have given a lot of suggestions and ideas. Nevertheless, there might be still errors or unclear aspects which are exclusively my fault. I hope this contribution serves as a basis for further discussions and new developments
Resumo:
Compositional data analysis motivated the introduction of a complete Euclidean structure in the simplex of D parts. This was based on the early work of J. Aitchison (1986) and completed recently when Aitchinson distance in the simplex was associated with an inner product and orthonormal bases were identified (Aitchison and others, 2002; Egozcue and others, 2003). A partition of the support of a random variable generates a composition by assigning the probability of each interval to a part of the composition. One can imagine that the partition can be refined and the probability density would represent a kind of continuous composition of probabilities in a simplex of infinitely many parts. This intuitive idea would lead to a Hilbert-space of probability densitiesby generalizing the Aitchison geometry for compositions in the simplex into the set probability densities
Resumo:
The simplex, the sample space of compositional data, can be structured as a real Euclidean space. This fact allows to work with the coefficients with respect to an orthonormal basis. Over these coefficients we apply standard real analysis, inparticular, we define two different laws of probability trought the density function and we study their main properties
Resumo:
Traditionally, compositional data has been identified with closed data, and the simplex has been considered as the natural sample space of this kind of data. In our opinion, the emphasis on the constrained nature ofcompositional data has contributed to mask its real nature. More crucial than the constraining property of compositional data is the scale-invariant property of this kind of data. Indeed, when we are considering only few parts of a full composition we are not working with constrained data but our data are still compositional. We believe that it is necessary to give a more precisedefinition of composition. This is the aim of this oral contribution
Resumo:
A version of Matheron’s discrete Gaussian model is applied to cell composition data.The examples are for map patterns of felsic metavolcanics in two different areas. Q-Qplots of the model for cell values representing proportion of 10 km x 10 km cell areaunderlain by this rock type are approximately linear, and the line of best fit can be usedto estimate the parameters of the model. It is also shown that felsic metavolcanics in theAbitibi area of the Canadian Shield can be modeled as a fractal
Resumo:
The biplot has proved to be a powerful descriptive and analytical tool in many areasof applications of statistics. For compositional data the necessary theoreticaladaptation has been provided, with illustrative applications, by Aitchison (1990) andAitchison and Greenacre (2002). These papers were restricted to the interpretation ofsimple compositional data sets. In many situations the problem has to be described insome form of conditional modelling. For example, in a clinical trial where interest isin how patients’ steroid metabolite compositions may change as a result of differenttreatment regimes, interest is in relating the compositions after treatment to thecompositions before treatment and the nature of the treatments applied. To study thisthrough a biplot technique requires the development of some form of conditionalcompositional biplot. This is the purpose of this paper. We choose as a motivatingapplication an analysis of the 1992 US President ial Election, where interest may be inhow the three-part composition, the percentage division among the three candidates -Bush, Clinton and Perot - of the presidential vote in each state, depends on the ethniccomposition and on the urban-rural composition of the state. The methodology ofconditional compositional biplots is first developed and a detailed interpretation of the1992 US Presidential Election provided. We use a second application involving theconditional variability of tektite mineral compositions with respect to major oxidecompositions to demonstrate some hazards of simplistic interpretation of biplots.Finally we conjecture on further possible applications of conditional compositionalbiplots
Resumo:
We propose to analyze shapes as “compositions” of distances in Aitchison geometry asan alternate and complementary tool to classical shape analysis, especially when sizeis non-informative.Shapes are typically described by the location of user-chosen landmarks. Howeverthe shape – considered as invariant under scaling, translation, mirroring and rotation– does not uniquely define the location of landmarks. A simple approach is to usedistances of landmarks instead of the locations of landmarks them self. Distances arepositive numbers defined up to joint scaling, a mathematical structure quite similar tocompositions. The shape fixes only ratios of distances. Perturbations correspond torelative changes of the size of subshapes and of aspect ratios. The power transformincreases the expression of the shape by increasing distance ratios. In analogy to thesubcompositional consistency, results should not depend too much on the choice ofdistances, because different subsets of the pairwise distances of landmarks uniquelydefine the shape.Various compositional analysis tools can be applied to sets of distances directly or afterminor modifications concerning the singularity of the covariance matrix and yield resultswith direct interpretations in terms of shape changes. The remaining problem isthat not all sets of distances correspond to a valid shape. Nevertheless interpolated orpredicted shapes can be backtransformated by multidimensional scaling (when all pairwisedistances are used) or free geodetic adjustment (when sufficiently many distancesare used)