993 resultados para Mass spectrometer


Relevância:

70.00% 70.00%

Publicador:

Resumo:

A selective and sensitive method was developed for the simultaneous quantification of seven typical antipsychotic drugs (cis-chlorprothixene, flupentixol, haloperidol, levomepromazine, pipamperone, promazine and zuclopenthixol) in human plasma. Ultra-high performance liquid chromatography (UHPLC) was used for complete separation of the compounds in less than 4.5min on an Acquity UPLC BEH C18 column (2.1mm×50mm; 1.7μm), with a gradient elution of ammonium formate buffer pH 4.0 and acetonitrile at a flow rate of 400μl/min. Detection was performed on a tandem quadrupole mass spectrometer (MS/MS) equipped with an electrospray ionization interface. A simple protein precipitation procedure with acetonitrile was used for sample preparation. Thanks to the use of stable isotope-labeled internal standards for all analytes, internal standard-normalized matrix effects were in the range of 92-108%. The method was fully validated to cover large concentration ranges of 0.2-90ng/ml for haloperidol, 0.5-90ng/ml for flupentixol, 1-450ng/ml for levomepromazine, promazine and zuclopenthixol and 2-900ng/ml for cis-chlorprothixene and pipamperone. Trueness (89.1-114.8%), repeatability (1.8-9.9%), intermediate precision (1.9-16.3%) and accuracy profiles (<30%) were in accordance with the latest international recommendations. The method was successfully used in our laboratory for routine quantification of more than 500 patient plasma samples for therapeutic drug monitoring. To the best of our knowledge, this is the first UHPLC-MS/MS method for the quantification of the studied drugs with a sample preparation based on protein precipitation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cannabis cultivation in order to produce drugs is forbidden in Switzerland. Thus, law enforcement authorities regularly ask forensic laboratories to determinate cannabis plant's chemotype from seized material in order to ascertain that the plantation is legal or not. As required by the EU official analysis protocol the THC rate of cannabis is measured from the flowers at maturity. When laboratories are confronted to seedlings, they have to lead the plant to maturity, meaning a time consuming and costly procedure. This study investigated the discrimination of fibre type from drug type Cannabis seedlings by analysing the compounds found in their leaves and using chemometrics tools. 11 legal varieties allowed by the Swiss Federal Office for Agriculture and 13 illegal ones were greenhouse grown and analysed using a gas chromatograph interfaced with a mass spectrometer. Compounds that show high discrimination capabilities in the seedlings have been identified and a support vector machines (SVMs) analysis was used to classify the cannabis samples. The overall set of samples shows a classification rate above 99% with false positive rates less than 2%. This model allows then discrimination between fibre and drug type Cannabis at an early stage of growth. Therefore it is not necessary to wait plants' maturity to quantify their amount of THC in order to determine their chemotype. This procedure could be used for the control of legal (fibre type) and illegal (drug type) Cannabis production.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The urinary steroid profile is constituted by anabolic androgenic steroids, including testosterone and its relatives, that are extensively metabolized into phase II sulfated or glucuronidated steroids. The use of liquid chromatography coupled to mass spectrometry (LC-MS) is an issue for the direct analysis of conjugated steroids, which can be used as urinary markers of exogenous steroid administration in doping analysis, without hydrolysis of the conjugated moiety. In this study, a sensitive and selective ultra high-pressure liquid chromatography coupled to quadrupole time-of-flight mass spectrometer (UHPLC-QTOF-MS) method was developed to quantify major urinary metabolites simultaneously after testosterone intake. The sample preparation of the urine (1 mL) was performed by solid-phase extraction on Oasis HLB sorbent using a 96-well plate format. The conjugated steroids were analyzed by UHPLC-QTOF-MS(E) with a single-gradient elution of 36 min (including re-equilibration time) in the negative electrospray ionization mode. MS(E) analysis involved parallel alternating acquisitions of both low- and high-collision energy functions. The method was validated and applied to samples collected from a clinical study performed with a group of healthy human volunteers who had taken testosterone, which were compared with samples from a placebo group. Quantitative results were also compared to GC-MS and LC-MS/MS measurements, and the correlations between data were found appropriate. The acquisition of full mass spectra over the entire mass range with QTOF mass analyzers gives promise of the opportunity to extend the steroid profile to a higher number of conjugated steroids.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A sensitive and selective ultra-high performance liquid chromatography (UHPLC) tandem mass spectrometry (MS/MS) method was developed for the fast quantification of ten psychotropic drugs and metabolites in human plasma for the needs of our laboratory (amisulpride, asenapine, desmethyl-mirtazapine, iloperidone, mirtazapine, norquetiapine, olanzapine, paliperidone, quetiapine and risperidone). Stable isotope-labeled internal standards were used for all analytes, to compensate for the global method variability, including extraction and ionization variations. Sample preparation was performed by generic protein precipitation with acetonitrile. Chromatographic separation was achieved in less than 3.0min on an Acquity UPLC BEH Shield RP18 column (2.1mm×50mm; 1.7μm), using a gradient elution of 10mM ammonium formate buffer pH 3.0 and acetonitrile at a flow rate of 0.4ml/min. The compounds were quantified on a tandem quadrupole mass spectrometer operating in positive electrospray ionization mode, using multiple reaction monitoring. The method was fully validated according to the latest recommendations of international guidelines. Eight point calibration curves were used to cover a large concentration range 0.5-200ng/ml for asenapine, desmethyl-mirtazapine, iloperidone, mirtazapine, olanzapine, paliperidone and risperidone, and 1-1500ng/ml for amisulpride, norquetiapine and quetiapine. Good quantitative performances were achieved in terms of trueness (93.1-111.2%), repeatability (1.3-8.6%) and intermediate precision (1.8-11.5%). Internal standard-normalized matrix effects ranged between 95 and 105%, with a variability never exceeding 6%. The accuracy profiles (total error) were included in the acceptance limits of ±30% for biological samples. This method is therefore suitable for both therapeutic drug monitoring and pharmacokinetic studies.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The screening of testosterone (T) misuse for doping control is based on the urinary steroid profile, including T, its precursors and metabolites. Modifications of individual levels and ratio between those metabolites are indicators of T misuse. In the context of screening analysis, the most discriminant criterion known to date is based on the T glucuronide (TG) to epitestosterone glucuronide (EG) ratio (TG/EG). Following the World Anti-Doping Agency (WADA) recommendations, there is suspicion of T misuse when the ratio reaches 4 or beyond. While this marker remains very sensitive and specific, it suffers from large inter-individual variability, with important influence of enzyme polymorphisms. Moreover, use of low dose or topical administration forms makes the screening of endogenous steroids difficult while the detection window no longer suits the doping habit. As reference limits are estimated on the basis of population studies, which encompass inter-individual and inter-ethnic variability, new strategies including individual threshold monitoring and alternative biomarkers were proposed to detect T misuse. The purpose of this study was to evaluate the potential of ultra-high pressure liquid chromatography (UHPLC) coupled with a new generation high resolution quadrupole time-of-flight mass spectrometer (QTOF-MS) to investigate the steroid metabolism after transdermal and oral T administration. An approach was developed to quantify 12 targeted urinary steroids as direct glucuro- and sulfo-conjugated metabolites, allowing the conservation of the phase II metabolism information, reflecting genetic and environmental influences. The UHPLC-QTOF-MS(E) platform was applied to clinical study samples from 19 healthy male volunteers, having different genotypes for the UGT2B17 enzyme responsible for the glucuroconjugation of T. Based on reference population ranges, none of the traditional markers of T misuse could detect doping after topical administration of T, while the detection window was short after oral TU ingestion. The detection ability of the 12 targeted steroids was thus evaluated by using individual thresholds following both transdermal and oral administration. Other relevant biomarkers and minor metabolites were studied for complementary information to the steroid profile, including sulfoconjugated analytes and hydroxy forms of glucuroconjugated metabolites. While sulfoconjugated steroids may provide helpful screening information for individuals with homozygotous UGT2B17 deletion, hydroxy-glucuroconjugated analytes could enhance the detection window of oral T undecanoate (TU) doping.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A highly sensitive ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) method was developed for the quantification of buprenorphine and its major metabolite norbuprenorphine in human plasma. In order to speed up the process and decrease costs, sample preparation was performed by simple protein precipitation with acetonitrile. To the best of our knowledge, this is the first application of this extraction technique for the quantification of buprenorphine in plasma. Matrix effects were strongly reduced and selectivity increased by using an efficient chromatographic separation on a sub-2μm column (Acquity UPLC BEH C18 1.7μm, 2.1×50mm) in 5min with a gradient of ammonium formate 20mM pH 3.05 and acetonitrile as mobile phase at a flow rate of 0.4ml/min. Detection was made using a tandem quadrupole mass spectrometer operating in positive electrospray ionization mode, using multiple reaction monitoring. The procedure was fully validated according to the latest Food and Drug Administration guidelines and the Société Française des Sciences et Techniques Pharmaceutiques. Very good results were obtained by using a stable isotope-labeled internal standard for each analyte, to compensate for the variability due to the extraction and ionization steps. The method was very sensitive with lower limits of quantification of 0.1ng/ml for buprenorphine and 0.25ng/ml for norbuprenorphine. The upper limit of quantification was 250ng/ml for both drugs. Trueness (98.4-113.7%), repeatability (1.9-7.7%), intermediate precision (2.6-7.9%) and internal standard-normalized matrix effects (94-101%) were in accordance with international recommendations. The procedure was successfully used to quantify plasma samples from patients included in a clinical pharmacogenetic study and can be transferred for routine therapeutic drug monitoring in clinical laboratories without further development.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Posaconazole (POS) is a new antifungal agent for prevention and therapy of mycoses in immunocompromised patients. Variable POS pharmacokinetics after oral dosing may influence efficacy: a trough threshold of 0.5 ?g/ml has been recently proposed. Measurement of POS plasma concentrations by complex chromatographic techniques may thus contribute to optimize prevention and management of life-threatening infections. No microbiological analytical method is available. The objective of this study was to develop and validate a new simplified ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method and a sensitive bioassay for quantification of POS over the clinical plasma concentration range. The UPLC-MS/MS equipment consisted of a triple quadrupole mass spectrometer, an electrospray ionization (ESI) source, and a C(18) analytical column. The Candida albicans POS-hypersusceptible mutant (MIC of 0.002 ?g/ml) ?cdr1 ?cdr2 ?flu ?mdr1 ?can constructed by targeted deletion of multidrug efflux transporters and calcineurin genes was used for the bioassay. POS was extracted from plasma by protein precipitation with acetonitrile-methanol (75%/25%, vol/vol). Reproducible standard curves were obtained over the range 0.014 to 12 (UPLC-MS/MS) and 0.028 to 12 ?g/ml (bioassay). Intra- and interrun accuracy levels were 106% ± 2% and 103% ± 4% for UPLC-MS/MS and 102% ± 8% and 104% ± 1% for bioassay, respectively. The intra- and interrun coefficients of variation were 7% ± 4% and 7% ± 3% for UPLC-MS/MS and 5% ± 3% and 4% ± 2% for bioassay, respectively. An excellent correlation between POS plasma concentrations measured by UPLC-MS/MS and bioassay was found (concordance, 0.96). In 26 hemato-oncological patients receiving oral POS, 27/69 (39%) trough plasma concentrations were lower than 0.5 ?g/ml. The UPLC-MS/MS method and sensitive bioassay offer alternative tools for accurate and precise quantification of the plasma concentrations in patients receiving oral posaconazole.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The objective of this work was to combine the advantages of the dried blood spot (DBS) sampling process with the highly sensitive and selective negative-ion chemical ionization tandem mass spectrometry (NICI-MS-MS) to analyze for recent antidepressants including fluoxetine, norfluoxetine, reboxetine, and paroxetine from micro whole blood samples (i.e., 10 microL). Before analysis, DBS samples were punched out, and antidepressants were simultaneously extracted and derivatized in a single step by use of pentafluoropropionic acid anhydride and 0.02% triethylamine in butyl chloride for 30 min at 60 degrees C under ultrasonication. Derivatives were then separated on a gas chromatograph coupled with a triple-quadrupole mass spectrometer operating in negative selected reaction monitoring mode for a total run time of 5 min. To establish the validity of the method, trueness, precision, and selectivity were determined on the basis of the guidelines of the "Société Française des Sciences et des Techniques Pharmaceutiques" (SFSTP). The assay was found to be linear in the concentration ranges 1 to 500 ng mL(-1) for fluoxetine and norfluoxetine and 20 to 500 ng mL(-1) for reboxetine and paroxetine. Despite the small sampling volume, the limit of detection was estimated at 20 pg mL(-1) for all the analytes. The stability of DBS was also evaluated at -20 degrees C, 4 degrees C, 25 degrees C, and 40 degrees C for up to 30 days. Furthermore, the method was successfully applied to a pharmacokinetic investigation performed on a healthy volunteer after oral administration of a single 40-mg dose of fluoxetine. Thus, this validated DBS method combines an extractive-derivative single step with a fast and sensitive GC-NICI-MS-MS technique. Using microliter blood samples, this procedure offers a patient-friendly tool in many biomedical fields such as checking treatment adherence, therapeutic drug monitoring, toxicological analyses, or pharmacokinetic studies.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The fragmentation patterns and mass spectra of some phenyl tin and -lead halide adducts with hexamethylphosphoramide are compared by subjecting them t~ electron impact and fast atom bombardment ionization in a mass spectrometer. This comparison is restricted to the metal-containing ions. Ligand-exchange mechanisms of some of the metal-containing species are explored by FAB-MS. Several moisturesensitive organo-metallics and H-bonded systems have been examined by FAB for attempted characterization, but without any success. Scavenging and trapping of water molecules by complex aggregates in solutions of quaternary ammonium fluorides and hydroxides are investigated by FAB to complement previous NMR-studies.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Les fichiers qui accompagnent mon document sont des tableaux supplémentaires réalisés avec Excel (Microsoft Office), dans la version papier du mémoire ces fichiers sont sur un CD-ROM.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Triple quadrupole mass spectrometers coupled with high performance liquid chromatography are workhorses in quantitative bioanalyses. It provides substantial benefits including reproducibility, sensitivity and selectivity for trace analysis. Selected Reaction Monitoring allows targeted assay development but data sets generated contain very limited information. Data mining and analysis of non-targeted high-resolution mass spectrometry profiles of biological samples offer the opportunity to perform more exhaustive assessments, including quantitative and qualitative analysis. The objectives of this study was to test method precision and accuracy, statistically compare bupivacaine drug concentration in real study samples and verify if high resolution and accurate mass data collected in scan mode can actually permit retrospective data analysis, more specifically, extract metabolite related information. The precision and accuracy data presented using both instruments provided equivalent results. Overall, the accuracy was ranging from 106.2 to 113.2% and the precision observed was from 1.0 to 3.7%. Statistical comparisons using a linear regression between both methods reveal a coefficient of determination (R2) of 0.9996 and a slope of 1.02 demonstrating a very strong correlation between both methods. Individual sample comparison showed differences from -4.5% to 1.6% well within the accepted analytical error. Moreover, post acquisition extracted ion chromatograms at m/z 233.1648 ± 5 ppm (M-56) and m/z 305.2224 ± 5 ppm (M+16) revealed the presence of desbutyl-bupivacaine and three distinct hydroxylated bupivacaine metabolites. Post acquisition analysis allowed us to produce semiquantitative evaluations of the concentration-time profiles for bupicavaine metabolites.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Ketamine is widely used in medicine in combination with several benzodiazepines including midazolam. The objectives of this study were to develop a novel HPLC-MS/SRM method capable of quantifying ketamine and norketamine using an isotopic dilution strategy in biological matrices and study the formation of norketamine, the principal metabolite of ketamine with and without the presence of midazolam, a well-known CYP3A substrate. The chromatographic separation was achieved using a Thermo Betasil Phenyl 100 x 2 mm column combined with an isocratic mobile phase composed of acetonitrile, methanol, water and formic acid (60:20:20:0.4) at a flow rate of 300 μL/min. The mass spectrometer was operating in selected reaction monitoring mode and the analytical range was set at 0.05–50 μM. The precision (%CV) and accuracy (%NOM) observed were ranging from 3.9–7.8 and 95.9.2–111.1% respectively. The initial rate of formation of norketamine was determined using various ketamine concentration and Km values of 18.4 μM, 13.8 μM and 30.8 μM for rat, dog and human liver S9 fractions were observed respectively. The metabolic stability of ketamine on liver S9 fractions was significantly higher in human (T1/2 = 159.4 min) compared with rat (T1/2 = 12.6 min) and dog (T1/2 = 7.3 min) liver S9 fractions. Moreover significantly lower IC50 and Ki values observed in human compared with rat and dog liver S9 fractions. Experiments with cDNA expressed CYP3A enzymes showed the formation of norketamine is mediated by CYP3A but results suggest an important contribution from others isoenzymes, most likely CYP2C particularly in rat.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In recent years, we observed a significant increase of food fraud ranging from false label claims to the use of additives and fillers to increase profitability. Recently in 2013, horse and pig DNA were detected in beef products sold from several retailers. Mass spectrometry has become the workhorse in protein research and the detection of marker proteins could serve for both animal species and tissue authentication. Meat species authenticity will be performed using a well defined proteogenomic annotation, carefully chosen surrogate tryptic peptides and analysis using a hybrid quadrupole-Orbitrap mass spectrometer. Selected mammalian meat samples were homogenized, proteins were extracted and digested with trypsin. The samples were analyzed using a high-resolution mass spectrometer. The chromatography was achieved using a 30 minutes linear gradient along with a BioBasic C8 100 × 1 mm column at a flow rate of 75 µL/min. The mass spectrometer was operated in full-scan high resolution and accurate mass. MS/MS spectra were collected for selected proteotypic peptides. Muscular proteins were methodically analyzed in silico in order to generate tryptic peptide mass lists and theoretical MS/MS spectra. Following a comprehensive bottom-up proteomic analysis, we were able to detect and identify a proteotypic myoglobin tryptic peptide [120-134] for each species with observed m/z below 1.3 ppm compared to theoretical values. Moreover, proteotypic peptides from myosin-1, myosin-2 and -hemoglobin were also identified. This targeted method allowed a comprehensive meat speciation down to 1% (w/w) of undesired product.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

With its highly fluctuating ion production matrix-assisted laser desorption/ionization (MALDI) poses many practical challenges for its application in mass spectrometry. Instrument tuning and quantitative ion abundance measurements using ion signal alone depend on a stable ion beam. Liquid MALDI matrices have been shown to be a promising alternative to the commonly used solid matrices. Their application in areas where a stable ion current is essential has been discussed but only limited data have been provided to demonstrate their practical use and advantages in the formation of stable MALDI ion beams. In this article we present experimental data showing high MALDI ion beam stability over more than two orders of magnitude at high analytical sensitivity (low femtomole amount prepared) for quantitative peptide abundance measurements and instrument tuning in a MALDI Q-TOF mass spectrometer. Samples were deposited on an inexpensive conductive hydrophobic surface and shrunk to droplets <10 nL in size. By using a sample droplet <10 nL it was possible to acquire data from a single irradiated spot for roughly 10,000 shots with little variation in ion signal intensity at a laser repetition rate of 5-20 Hz.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A method is described for the analysis of deuterated and undeuterated alpha-tocopherol in blood components using liquid chromatography coupled to an orthogonal acceleration time-of-flight (TOF) mass spectrometer. Optimal ionisation conditions for undeuterated (d0) and tri- and hexadeuterated (d3 or d6) alpha-tocopherol standards were found with negative ion mode electrospray ionisation. Each species produced an isotopically resolved single ion of exact mass. Calibration curves of pure standards were linear in the range tested (0-1.5 muM, 0-15 pmol injected). For quantification of d0 and d6 in blood components following a standard solvent extraction, a stable-isotope-labelled internal standard (d3-alpha-tocopherol) was employed. To counter matrix ion suppression effects, standard response curves were generated following identical solvent extraction procedures to those of the samples. Within-day and between-day precision were determined for quantification of d0- and d6-labelled alpha-tocopherol in each blood component and both averaged 3-10%. Accuracy was assessed by comparison with a standard high-performance liquid chromatography (HPLC) method, achieving good correlation (r(2) = 0.94), and by spiking with known concentrations of alpha-tocopherol (98% accuracy). Limits of detection and quantification were determined to be 5 and 50 fmol injected, respectively. The assay was used to measure the appearance and disappearance of deuterium-labelled alpha-tocopherol in human blood components following deuterium-labelled (d6) RRR-alpha-tocopheryl acetate ingestion. The new LC/TOFMS method was found to be sensitive, required small sample volumes, was reproducible and robust, and was capable of high throughput when large numbers of samples were generated. Copyright (C) 2003 John Wiley Sons, Ltd.