609 resultados para Marsilio, de Padua
Resumo:
Mode of access: Internet.
Resumo:
Lorenzo Lotto; 2 ft. 3 61/64 in.x 2 ft. 10 41/64 in.; oil on canvas
Resumo:
Mode of access: Internet.
Resumo:
The vindictive father has special half-title.
Resumo:
nach Victor Hugo frei bearbeitet von Dr. Siegmund Saphir
Resumo:
81
Resumo:
Background: Despite the importance of collecting individual data of socioeconomic status (SES) in epidemiological oral health surveys with children, this procedure relies on the parents as respondents. Therefore, type of school (public or private schools) could be used as an alternative indicator of SES, instead of collecting data individually. The aim of this study was to evaluate the use of the variable type of school as an indicator of socioeconomic status as a substitute of individual data in an epidemiological survey about dental caries in Brazilian preschool children. Methods: This study followed a cross-sectional design, with a random sample of 411 preschool children aged 1 to 5 years, representative of Catalao, Brazil. A calibrated examiner evaluated the prevalence of dental caries and parents or guardians provided information about several individual socioeconomic indicators by means of a semi-structured questionnaire. A multilevel approach was used to investigate the association among individual socioeconomic variables, as well as the type of school, and the outcome. Results: When all significant variables in the univariate analysis were used in the multiple model, only mother's schooling and household income (individual socioeconomic variables) presented significant associations with presence of dental caries, and the type of school was not significantly associated. However, when the type of school was used alone, children of public school presented significantly higher prevalence of dental caries than those enrolled in private schools. Conclusions: The type of school used as an alternative indicator for socioeconomic status is a feasible predictor for caries experience in epidemiological dental caries studies involving preschool children in Brazilian context.
Resumo:
Pollen transport to a receptive stigma can be facilitated through different pollinators, which submits the pollen to different selection pressures. This study aimed to associate pollen and stigma morphology with zoophily in species of the tribe Phaseoleae. Species of the genera Erythrina, Macroptilium and Mucuna with different pollinators were chosen. Pollen grains and stigmas were examined under light microscopy (anatomy), scanning electronic microscopy (surface analyses) and transmission electronic microscopy (ultrastructure). The three genera differ in terms of pollen wall ornamentation, pollen size, pollen aperture, thickness of the pollen wall, amount of pollenkitt, pollen hydration status and dominant reserves within the pollen grain, while species within each genus are very similar in most studied characteristics. Most of these features lack relationships to pollinator type, especially in Erythrina and Mucuna. Pollen reserves are discussed on a broad scale, according to the occurrence of protein in the pollen of invertebrate- or vertebrate-pollinated species. Some pollen characteristics are more associated to semi-dry stigma requirements. This apical, compact, cuticularised and secretory stigma occurs in all species investigated. We conclude that data on pollen and stigma structure should be included together with those on floral morphology and pollinator behaviour for the establishment of functional pollination classes.
Resumo:
By considering controversial discussions in the literature with regard to gland denomination in Indigofera species, as well as the taxonomic value of secretory structures in Leguminosae, we aim to morphologically detail glands that had been previously observed in I. microcarpa and I. sabulicola, and to investigate the occurrence of glands in vegetative and reproductive organs of other six Neotropical species that belong to the genus. Glands analyzed through scanning electronic microscopy (SEM) in combination with anatomic analyses correspond to secretory trichomes that Lire classified into seven types. Main variations in relation to types occurred with regard to head shape and peduncle size. Trichome heads were multicellular, with a thin cuticle. Hollow heads with conspicuous inner space characterized only one type (type I); the other trichome types had massive heads. Peduncles, which varied from biseriate to multiseriate, had thick, pecto-cellulosic cell walls. Trichomes were found on sterns, stipules, petioles, rachis, petiolules, leaflets, bracteoles, sepals, standards and fruits, more commonly along the margins. Each of the eight Indigofera species analyzed had at least two different trichome types out of the seven types that occurred in reproductive and vegetative organs of these taxa. Various types of secretory trichomes were found in I. campestris, I. lespedezioides, I. microcarpa, I. spicata. I. Suffruticosa and I. truxillensis. Stems and rachis were the vegetative organs in which a greater variety of trichomes occurred, and sepals were parts of reproductive organs with the same status. Five out of the seven secretory trichome types occurred on both vegetative and reproductive organs. Distribution and gland types differed between species and these gland distribution patterns can be used as diagnostic characters. Reports of glands in Indigofera campestris, I. hirsuta, I. lepedezioides, I. suffruticosa, I. spicata and I. truxillensis, their recognition as secretory trichomes. and the morphological variety of types found for such trichomes are novel data for Indigofera. (C) 2008 Elsevier GmbH. All rights reserved.
Resumo:
Inflorescence and floral development of two tropical legume trees, Dahlstedtia pinnata and Dahlstedlia pentaphylla, occurring in the Atlantic Forest of south-eastern and southern Brazil, were investigated and compared with other papilionoids. Few studies have been made of floral development in tribe Millettieae, and this paper is intended to fill that gap in our knowledge. Dahlstedtia species have an unusual inflorescence type among legumes, the pseudoraceme, which comprises axillary units of three or more flowers, each with a subtending bract. Each flower exhibits a pair of opposite bractcoles. The order of flower initiation is acropetal; inception of the floral organs is as follows: sepals (5), petals (5), carpel (1) plus outer stamens (5) and finally inner stamens (5). Organ initiation in sepal, petal and inner stamen whorls is unidirectional; the carpel cleft is adaxial. The vexillum originates from a tubular-shaped primordium in mid-development and is larger than other petals at maturity, covering the keels. The filament tube develops later after initiation of inner-stamen primordia. Floral development in Dahlstedtia is almost always similar to other papilionoids, especially species of Phaseoleae and Sophoreae. But one important difference is the precocious ovule initiation (open carpel with ovules) in Dahlstedtia, the third citation of this phenomenon for papilionoids. No suppression, organ loss or anomalies occur in the order of primordia initiation or structure. Infra-generic differences in the first stages of ontogeny are rare; however, different species of Dahlstedtia are distinguished by the differing distribution pattern of secretory cavities in the flower. (C) 2009 Elsevier GmbH. All rights reserved.
Resumo:
Flower and inflorescence anatomy and morphology of Exostyles, Harleyodendron, Holocalyx, Lecointea, and Zollernia (Leguminosae, Lecointea clade) were studied. Features common to all genera but otherwise rare within the Leguminosae include: (1) the presence of phenolic compounds in the epidermal cells of the anthers and subepidermal cells of the bracteoles, sepals, petals, and ovaries (absent in Holocalyx balansae); (2) simple trichomes on the adaxial base of the bracteoles and on the surface of the calyx and ovaries; and (3) tapetum persisting until the androspores are formed. Other notable anatomical features are: (1) colleters on the adaxial bases of the bracts and bracteoles of Holocalyx balansae and Zollernia ilicifolia; (2) trichomes on the anthers of Harleyodendron unifoliolatum, Holocalyx balansae, Lecointea hatschbachii, Zollernia ilicifolia and Z. magnifica; (3) osmophores on the petals of Exostyles godoyensis; (4) asynchronous pollen development in the anthers of Holocalyx balansae and Zollernia magnifica; and (5) vascular bundles surrounded by lignified fibers in Harleyodendron unifoliolatum. These anatomical characters are discussed according to their possible phylogenetic implications.
Resumo:
The ecological and economic importance of oleoresin produced by Copaifera langsdorffii is well established. This study aims to investigate the ontogeny, anatomy and ultrastructure of the internal glands of C. langsdorffii during plant development. Samples were processed for light and electron microscopy and a specific technique was applied to impregnate endomembranes. Internal secretory glands were observed in the hypocotyl, epicotyl and eophylls of seedlings, and in the primary stem, pulvinus, petiole, rachis and leaf blade of adult plants. Canals and cavities show differential distribution. They arise from ground meristem cells, and the lumen is first formed by schizogenesis followed by later schizolysigenous development. The dense cytoplasm of epithelial cells shows mitochondria, plastids without thylakoids, polyribosomes and endoplasmic reticulum. A periplastidial reticulum was also observed. Secretion is released by eccrine, granulocrine and holocrine processes. Lipophilic and hydrophilic compounds were histochemically detected in both canals and cavities, whereas resin was detected only in canals. The presence of these substances has been associated with plants` defences against dehydration, as well as against attacks from herbivores and pathogens, from seedling stage onwards. (C) 2011 Elsevier GmbH. All rights reserved.
Resumo:
(Morpho-anatomical studies of seeds and seedlings of wild indigo, ""anileira"", Indigofera-Leguminosae). The common name ""wild indigo"" specifies Indigofera will L., I. suffruticosa Mill. (legitimate name) and I. truxillensis Kunth (legitimate name) that are very similar due to their external morphology. This work analyzed diagnostic characteristics of seeds and seedlings of these species since such features are widely used in taxonomic approaches within Leguminosae. We studied surface features and morpho-anatomy of seeds and cotyledons with scanning electronic microscopy and light microscopy, and described seedling phases. Although seedlings are similar, seed characteristics (size, shape, surface ornamentation, shape of the hilum and embryo size) and cotyledon characteristics (shape, trichome ornamentation, organization of spongy parenchyma along central veins and metabolite distribution in the tissues) have diagnostic features for the species. I. anil differs from I. suffruticosa in its larger seeds and acuminate-margined cotyledons. I. truxillensis is recognized by its cylindrical seeds and kidney-shaped cotyledons with large oil drops. We assume that the characteristics examined, plus fruit morphology and foliar anatomy suggest that I. anil, I. suffruticosa and I. truxillensis should not be synonymized.
Resumo:
LEITE, V. G., F. S. MARQUIAFAVEL, D. P. MORAES, AND S. P. TEIXEIRA (Departamento de Ciencias Farmaceuticas, Faculdade de Ciencias Farmaceuticas de Ribeirao Preto, Universidade de Sao Paulo (USP), Av. do Cafe, s/n, 14040-903 Ribeirao Preto, SP, Brazil). Fruit anatomy of Neotropical species of Indigofera (Leguminosae, Papilionoideae) with functional and taxonomic implications. J. Torrey Bot. Soc. 136: 203-211. 2009-This work reports on the fruit surface and anatomy of seven Neotropical species of Indigofera (I. campestris Bong. ex Benth., I. hirsuta L., I. lespedeziodes Kunth, I. microcarpa Desv., I. spicata Forssk., I. suffruticosa Mill., and I. truxillensis Kunth) to help species diagnosis and clarify the fruit type classification. Flowers and fruits at several stages of development were removed from living material, fixed, and examined with scanning electron (surface analyses) and light microscopies (histological analyses). Species showed differences in relation to the number of exocarp layers, secretory trichome morphology and distribution, presence of stomata, phenolic idioblast size and distribution in mesocarp, the number and arrangement of endocarp fibers, and the presence of it separation tissue. It is noteworthy that no separation tissue was observed in L microcarpa and I. suffruticosa, although they have dehiscent fruits, which indicates it delayed dehiscence. The present work confirms that fruit anatomical characters can be utilized as it tool for fruit type classification, especially in Indigofera, the third largest genus of Leguminosae.
Resumo:
Inflorescence and floral development of three species of Indigofera (Leguminosae-Papilionoideae), I. lespedezioides, I. spicata, and I. suffruticosa, were investigated and compared with that of other papilionoid groups, especially with members of the recently circumscribed Millettioid clade, which was merged as sister to Indigofereae in a recent cladistic analysis. Although Indigofera is a genus of special interest, because of its great richness in species and its economic importance, few studies have been made of floral development in the genus or in Indigofereae as a whole. Flower buds and inflorescences were analysed at several stages of development in the three species. Our results confirmed that Indigofera species bear a usual inflorescence type among legumes, the raceme, which comprises flowers initiated in acropetal succession, each with a subtending bract and no bracteoles initiated. The inception of the floral organs is as follows: sepals (5), petals (5), carpel (1), outer stamens (5), and, finally, inner stamens (5). Organ initiation in the sepal, petal, and both stamen whorls is unidirectional, from the abaxial side; the carpel cleft is adaxial. The vexillum is larger than other petals at maturity, covering the keels, which are fused edge-to-edge. Nine filaments are fused to form an adaxially open sheath, and the adaxial stamen of the inner whorl remains free (diadelphous androecium) in the mid-stage of development. Most of the infra-generic differences occurred in the later stages of development. Data on floral development in Indigofera obtained here were also compared with those from other members of Papilionoideae. This comparison showed that the early expression of zygomorphy is shared with other members of the Millettioid clade but is rarely found in other papilionoids, corresponding to a hypothetically morphological synapomorphy in the pair Indigoferae plus millettioids.