895 resultados para Markov chains. Convergence. Evolutionary Strategy. Large Deviations


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Island races of passerine birds display repeated evolution towards larger body size compared with their continental ancestors. The Capricorn silvereye (Zosterops lateralis chlorocephalus) has become up to six phenotypic standard deviations bigger in several morphological measures since colonization of an island approximately 4000 years ago. We estimated the genetic variance-covariance (G) matrix using full-sib and 'animal model' analyses, and selection gradients, for six morphological traits under field conditions in three consecutive cohorts of nestlings. Significant levels of genetic variance were found for all traits. Significant directional selection was detected for wing and tail lengths in one year and quadratic selection on culmen depth in another year. Although selection gradients on many traits were negative, the predicted evolutionary response to selection of these traits for all cohorts was uniformly positive. These results indicate that the G matrix and predicted evolutionary responses are consistent with those of a population evolving in the manner observed in the island passerine trend, that is, towards larger body size.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider a chain composed of $N$ coupled harmonic oscillators in contact with heat baths at temperature $T_\ell$ and $T_r$ at sites 1 and $N$ respectively. The oscillators are also subjected to non-momentum conserving bulk stochastic noises. These make the heat conductivity satisfy Fourier's law. Here we describe some new results about the hydrodynamical equations for typical macroscopic energy and displacement profiles, as well as their fluctuations and large deviations, in two simple models of this type.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conventional Hidden Markov models generally consist of a Markov chain observed through a linear map corrupted by additive noise. This general class of model has enjoyed a huge and diverse range of applications, for example, speech processing, biomedical signal processing and more recently quantitative finance. However, a lesser known extension of this general class of model is the so-called Factorial Hidden Markov Model (FHMM). FHMMs also have diverse applications, notably in machine learning, artificial intelligence and speech recognition [13, 17]. FHMMs extend the usual class of HMMs, by supposing the partially observed state process is a finite collection of distinct Markov chains, either statistically independent or dependent. There is also considerable current activity in applying collections of partially observed Markov chains to complex action recognition problems, see, for example, [6]. In this article we consider the Maximum Likelihood (ML) parameter estimation problem for FHMMs. Much of the extant literature concerning this problem presents parameter estimation schemes based on full data log-likelihood EM algorithms. This approach can be slow to converge and often imposes heavy demands on computer memory. The latter point is particularly relevant for the class of FHMMs where state space dimensions are relatively large. The contribution in this article is to develop new recursive formulae for a filter-based EM algorithm that can be implemented online. Our new formulae are equivalent ML estimators, however, these formulae are purely recursive and so, significantly reduce numerical complexity and memory requirements. A computer simulation is included to demonstrate the performance of our results. © Taylor & Francis Group, LLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Among the largest resources for biological sequence data is the large amount of expressed sequence tags (ESTs) available in public and proprietary databases. ESTs provide information on transcripts but for technical reasons they often contain sequencing errors. Therefore, when analyzing EST sequences computationally, such errors must be taken into account. Earlier attempts to model error prone coding regions have shown good performance in detecting and predicting these while correcting sequencing errors using codon usage frequencies. In the research presented here, we improve the detection of translation start and stop sites by integrating a more complex mRNA model with codon usage bias based error correction into one hidden Markov model (HMM), thus generalizing this error correction approach to more complex HMMs. We show that our method maintains the performance in detecting coding sequences.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O artigo analisa a convergência municipal da produtividade vegetal (extração vegetal e silvicultura) na região da Amazônia Legal entre os anos de 1996 e 2006. Para analisar a convergência, optou-se pela metodologia da matriz de transição de Markov (Processo Estacionário de Primeira Ordem de Markov). Os resultados mostram a existência de 13 classes de convergência da produtividade vegetal. No longo prazo, a hipótese de convergência absoluta não se mantém, visto que 68,23% dos municípios encontram-se numa classe inferior à média municipal, 33,54% em uma classe intermediária acima da média e 13,41% em uma classe superior acima da média.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Ciência da Computação - IBILCE

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis is a collection of works focused on the topic of Earthquake Early Warning, with a special attention to large magnitude events. The topic is addressed from different points of view and the structure of the thesis reflects the variety of the aspects which have been analyzed. The first part is dedicated to the giant, 2011 Tohoku-Oki earthquake. The main features of the rupture process are first discussed. The earthquake is then used as a case study to test the feasibility Early Warning methodologies for very large events. Limitations of the standard approaches for large events arise in this chapter. The difficulties are related to the real-time magnitude estimate from the first few seconds of recorded signal. An evolutionary strategy for the real-time magnitude estimate is proposed and applied to the single Tohoku-Oki earthquake. In the second part of the thesis a larger number of earthquakes is analyzed, including small, moderate and large events. Starting from the measurement of two Early Warning parameters, the behavior of small and large earthquakes in the initial portion of recorded signals is investigated. The aim is to understand whether small and large earthquakes can be distinguished from the initial stage of their rupture process. A physical model and a plausible interpretation to justify the observations are proposed. The third part of the thesis is focused on practical, real-time approaches for the rapid identification of the potentially damaged zone during a seismic event. Two different approaches for the rapid prediction of the damage area are proposed and tested. The first one is a threshold-based method which uses traditional seismic data. Then an innovative approach using continuous, GPS data is explored. Both strategies improve the prediction of large scale effects of strong earthquakes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objects of a large-scale gas-transport company (GTC) suggest a complex unified evolutionary approach, which covers basic building concepts, up-to-date technologies, models, methods and means that are used in the phases of design, adoption, maintenance and development of the multilevel automated distributed control systems (ADCS).. As a single methodological basis of the suggested approach three basic Concepts, which contain the basic methodological principles and conceptual provisions on the creation of distributed control systems, were worked out: systems of the lower level (ACS of the technological processes based on up-to-date SCADA), of the middle level (ACS of the operative-dispatch production control based on MES-systems) and of the high level (business process control on the basis of complex automated systems ERP).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present quasi-Monte Carlo analogs of Monte Carlo methods for some linear algebra problems: solving systems of linear equations, computing extreme eigenvalues, and matrix inversion. Reformulating the problems as solving integral equations with a special kernels and domains permits us to analyze the quasi-Monte Carlo methods with bounds from numerical integration. Standard Monte Carlo methods for integration provide a convergence rate of O(N^(−1/2)) using N samples. Quasi-Monte Carlo methods use quasirandom sequences with the resulting convergence rate for numerical integration as good as O((logN)^k)N^(−1)). We have shown theoretically and through numerical tests that the use of quasirandom sequences improves both the magnitude of the error and the convergence rate of the considered Monte Carlo methods. We also analyze the complexity of considered quasi-Monte Carlo algorithms and compare them to the complexity of the analogous Monte Carlo and deterministic algorithms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 62G07, 60F10.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-08

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O estudo do crescimento econômico é de suma importância para que possamos averiguar a trajetória de uma economia ao longo do tempo, a proposta desse trabalho é analisar o crescimento econômico no estado do Rio Grande do Sul, através do instrumental das cadeias de Markov, a ideia principal do estudo está na hipótese de convergência de renda. Primeiramente será testado a hipótese de convergência de renda do estado por meio das microrregiões, para isso serão utilizados dados de produto per capita dos anos de 1990, 2000 e 2010. Também será testado a hipótese de convergência para os municípios do Conselho Regional de Desenvolvimento Sul, situado no Rio Grande do Sul, utilizando dados de renda per capita dos anos de 1991, 2000 e 2010. Os resultados obtidos para as microrregiões do Rio Grande do Sul mostram que as economias não estão convergindo em sua totalidade para uma classe de renda especifica, porém é percebido que no longo prazo haverá uma maior concentração das microrregiões nos extratos de renda próximos a média, o tempo esperado para que as economias cheguem ao seu estado estacionário é de seis períodos. Por meio dos resultados obtidos para a região do Corede Sul, temos que as economias convergirão em sua maioria para a classe de renda médio pobre, seguido pela classe dos médios ricos. Ambas as classes estão situadas próximas a média regional, sendo que as classes de renda pobre e rico situadas aos extremos serão extintas no longo prazo. O tempo esperado para que as economias cheguem ao estado estacionário é de onze períodos.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O estudo do crescimento econômico é de suma importância para que possamos averiguar a trajetória de uma economia ao longo do tempo, a proposta desse trabalho é analisar o crescimento econômico no estado do Rio Grande do Sul, através do instrumental das cadeias de Markov, a ideia principal do estudo está na hipótese de convergência de renda. Primeiramente será testado a hipótese de convergência de renda do estado por meio das microrregiões, para isso serão utilizados dados de produto per capita dos anos de 1990, 2000 e 2010. Também será testado a hipótese de convergência para os municípios do Conselho Regional de Desenvolvimento Sul, situado no Rio Grande do Sul, utilizando dados de renda per capita dos anos de 1991, 2000 e 2010. Os resultados obtidos para as microrregiões do Rio Grande do Sul mostram que as economias não estão convergindo em sua totalidade para uma classe de renda especifica, porém é percebido que no longo prazo haverá uma maior concentração das microrregiões nos extratos de renda próximos a média, o tempo esperado para que as economias cheguem ao seu estado estacionário é de seis períodos. Por meio dos resultados obtidos para a região do Corede Sul, temos que as economias convergirão em sua maioria para a classe de renda médio pobre, seguido pela classe dos médio ricos. Ambas as classes estão situadas próximas a média regional, sendo que as classes de renda pobre e rico situadas aos extremos serão extintas no longo prazo. O tempo esperado para que as economias cheguem ao estado estacionário é de onze períodos.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present some estimates of the time of convergence to the equilibrium distribution in autonomous and periodic non-autonomous graphs, with ergodic stochastic adjacency matrices, using the eigenvalues of these matrices. On this way we generalize previous results from several authors, that only considered reversible matrices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gradient-based approaches to direct policy search in reinforcement learning have received much recent attention as a means to solve problems of partial observability and to avoid some of the problems associated with policy degradation in value-function methods. In this paper we introduce GPOMDP, a simulation-based algorithm for generating a biased estimate of the gradient of the average reward in Partially Observable Markov Decision Processes (POMDPs) controlled by parameterized stochastic policies. A similar algorithm was proposed by Kimura, Yamamura, and Kobayashi (1995). The algorithm's chief advantages are that it requires storage of only twice the number of policy parameters, uses one free parameter β ∈ [0,1) (which has a natural interpretation in terms of bias-variance trade-off), and requires no knowledge of the underlying state. We prove convergence of GPOMDP, and show how the correct choice of the parameter β is related to the mixing time of the controlled POMDP. We briefly describe extensions of GPOMDP to controlled Markov chains, continuous state, observation and control spaces, multiple-agents, higher-order derivatives, and a version for training stochastic policies with internal states. In a companion paper (Baxter, Bartlett, & Weaver, 2001) we show how the gradient estimates generated by GPOMDP can be used in both a traditional stochastic gradient algorithm and a conjugate-gradient procedure to find local optima of the average reward. ©2001 AI Access Foundation and Morgan Kaufmann Publishers. All rights reserved.