935 resultados para Markov Switching model


Relevância:

90.00% 90.00%

Publicador:

Resumo:

In 2007 futures contracts were introduced based upon the listed real estate market in Europe. Following their launch they have received increasing attention from property investors, however, few studies have considered the impact their introduction has had. This study considers two key elements. Firstly, a traditional Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model, the approach of Bessembinder & Seguin (1992) and the Gray’s (1996) Markov-switching-GARCH model are used to examine the impact of futures trading on the European real estate securities market. The results show that futures trading did not destabilize the underlying listed market. Importantly, the results also reveal that the introduction of a futures market has improved the speed and quality of information flowing to the spot market. Secondly, we assess the hedging effectiveness of the contracts using two alternative strategies (naïve and Ordinary Least Squares models). The empirical results also show that the contracts are effective hedging instruments, leading to a reduction in risk of 64 %.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Existing theoretical models of house prices and credit rely on continuous rationality of consumers, an assumption that has been frequently questioned in recent years. Meanwhile, empirical investigations of the relationship between prices and credit are often based on national-level data, which is then tested for structural breaks and asymmetric responses, usually with subsamples. Earlier author argues that local markets are structurally different from one another and so the coefficients of any estimated housing market model should vary from region to region. We investigate differences in the price–credit relationship for 12 regions of the UK. Markov-switching is introduced to capture asymmetric market behaviours and turning points. Results show that credit abundance had a large impact on house prices in Greater London and nearby regions alongside a strong positive feedback effect from past house price movements. This impact is even larger in Greater London and the South East of England when house prices are falling, which are the only instances where the credit effect is more prominent than the positive feedback effect. A strong positive feedback effect from past lending activity is also present in the loan dynamics. Furthermore, bubble probabilities extracted using a discrete Kalman filter neatly capture market turning points.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Este trabalho tem como objetivo identificar a predominância de um regime de Dominância Monetária ou Fiscal no Brasil no período Pós-Real. Para isto, o desenvolvimento desta análise é baseado em um modelo proposto por Canzoneri, Cumby e Diba (2000). O modelo propõe uma relação entre as séries dívida pública/PIB e superávit primário/PIB através da metodologia VAR (Vetores Autoregressivos) com análise sobre suas funções de impulso resposta. Outro objetivo é estender o artigo de Muscatelli et. al. (2002) sobre interações entre políticas monetária e fiscal utilizando o instrumental econométrico MS-VAR (Markov-Switching Vector Autoregressive Model) apresentado por Krolzig (1997), visto que o relacionamento entre as políticas pode não ser constante ao longo do tempo. Concluiu-se que a coordenação macroeconômica entre as políticas monetária e fiscal no Brasil foi praticamente de caráter substituta em todo período analisado e com regime predominantemente fiscal segundo o pressuposto de políticas não-ricardianas da Teoria Fiscal do Nível de Preços.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Nas últimas décadas, a análise dos padrões de propagação internacional de eventos financeiros se tornou o tema de grande parte dos estudos acadêmicos focados em modelos de volatilidade multivariados. Diante deste contexto, objetivo central do presente estudo é avaliar o fenômeno de contágio financeiro entre retornos de índices de Bolsas de Valores de diferentes países a partir de uma abordagem econométrica, apresentada originalmente em Pelletier (2006), sobre a denominação de Regime Switching Dynamic Correlation (RSDC). Tal metodologia envolve a combinação do Modelo de Correlação Condicional Constante (CCC) proposto por Bollerslev (1990) com o Modelo de Mudança de Regime de Markov sugerido por Hamilton e Susmel (1994). Foi feita uma modificação no modelo original RSDC, a introdução do modelo GJR-GARCH formulado em Glosten, Jagannathan e Runkle (1993), na equação das variâncias condicionais individuais das séries para permitir capturar os efeitos assimétricos na volatilidade. A base de dados foi construída com as séries diárias de fechamento dos índices das Bolsas de Valores dos Estados Unidos (SP500), Reino Unido (FTSE100), Brasil (IBOVESPA) e Coréia do Sul (KOSPI) para o período de 02/01/2003 até 20/09/2012. Ao longo do trabalho a metodologia utilizada foi confrontada com outras mais difundidos na literatura, e o modelo RSDC com dois regimes foi definido como o mais apropriado para a amostra selecionada. O conjunto de resultados encontrados fornecem evidências a favor da existência de contágio financeiro entre os mercados dos quatro países considerando a definição de contágio financeiro do Banco Mundial denominada de “muito restritiva”. Tal conclusão deve ser avaliada com cautela considerando a extensa diversidade de definições de contágio existentes na literatura.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper constructs an indicator of Brazilian GDP at the monthly ftequency. The peculiar instability and abrupt changes of regimes in the dynamic behavior of the Brazilian business cycle were explicitly modeled within nonlinear ftameworks. In particular, a Markov switching dynarnic factor model was used to combine several macroeconomic variables that display simultaneous comovements with aggregate economic activity. The model generates as output a monthly indicator of the Brazilian GDP and real time probabilities of the current phase of the Brazilian business cycle. The monthly indicator shows a remarkable historical conformity with cyclical movements of GDP. In addition, the estimated filtered probabilities predict ali recessions in sample and out-of-sample. The ability of the indicator in linear forecasting growth rates of GDP is also examined. The estimated indicator displays a better in-sample and out-of-sample predictive performance in forecasting growth rates of real GDP, compared to a linear autoregressive model for GDP. These results suggest that the estimated monthly indicator can be used to forecast GDP and to monitor the state of the Brazilian economy in real time.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

O presente estudo tem como objetivo comparar e combinar diferentes técnicas de projeção para o PIB trimestral brasileiro de 1991 ao segundo trimestre de 2014, utilizando dados agregados, e dados desagregados com pesos fixos e estocásticos. Os modelos desagregados univariados e multivariados, assim como os pesos estocásticos, foram estimados pelo algoritmo Autometrics criado por Doornik (2009), através dos níveis de desagregação disponibilizados pelo IBGE no Sistema de Contas Nacionais. Os modelos agregados foram estimados pelo Autometrics, por Markov-Switching e por modelos estruturais de espaço-estado. A metodologia de comparação de projeções utilizada foi o Model Confidence Set, desenvolvida por Hanse, Lunde e Nason (2011). Foram realizadas duas simulações, sendo a primeira com a análise fora da amostra a partir de 2008, e a segunda a partir de 2000, com horizonte de projeção de até 6 passos à frente. Os resultados sugerem que os modelos desagregados com pesos fixos desempenham melhor nos dois primeiros passos, enquanto nos períodos restantes os modelos da série agregada geram melhores previsões.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Este trabalho avalia as previsões de três métodos não lineares — Markov Switching Autoregressive Model, Logistic Smooth Transition Autoregressive Model e Autometrics com Dummy Saturation — para a produção industrial mensal brasileira e testa se elas são mais precisas que aquelas de preditores naive, como o modelo autorregressivo de ordem p e o mecanismo de double differencing. Os resultados mostram que a saturação com dummies de degrau e o Logistic Smooth Transition Autoregressive Model podem ser superiores ao mecanismo de double differencing, mas o modelo linear autoregressivo é mais preciso que todos os outros métodos analisados.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This work assesses the forecasts of three nonlinear methods | Markov Switching Autoregressive Model, Logistic Smooth Transition Auto-regressive Model, and Auto-metrics with Dummy Saturation | for the Brazilian monthly industrial production and tests if they are more accurate than those of naive predictors such as the autoregressive model of order p and the double di erencing device. The results show that the step dummy saturation and the logistic smooth transition autoregressive can be superior to the double di erencing device, but the linear autoregressive model is more accurate than all the other methods analyzed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This work proposes a method to examine variations in the cointegration relation between preferred and common stocks in the Brazilian stock market via Markovian regime switches. It aims on contributing for future works in "pairs trading" and, more specifically, to price discovery, given that, conditional on the state, the system is assumed stationary. This implies there exists a (conditional) moving average representation from which measures of "information share" (IS) could be extracted. For identification purposes, the Markov error correction model is estimated within a Bayesian MCMC framework. Inference and capability of detecting regime changes are shown using a Montecarlo experiment. I also highlight the necessity of modeling financial effects of high frequency data for reliable inference.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The aim of our study was to develop a modeling framework suitable to quantify the incidence, absolute number and economic impact of osteoporosis-attributable hip, vertebral and distal forearm fractures, with a particular focus on change over time, and with application to the situation in Switzerland from 2000 to 2020. A Markov process model was developed and analyzed by Monte Carlo simulation. A demographic scenario provided by the Swiss Federal Statistical Office and various Swiss and international data sources were used as model inputs. Demographic and epidemiologic input parameters were reproduced correctly, confirming the internal validity of the model. The proportion of the Swiss population aged 50 years or over will rise from 33.3% in 2000 to 41.3% in 2020. At the total population level, osteoporosis-attributable incidence will rise from 1.16 to 1.54 per 1,000 person-years in the case of hip fracture, from 3.28 to 4.18 per 1,000 person-years in the case of radiographic vertebral fracture, and from 0.59 to 0.70 per 1,000 person-years in the case of distal forearm fracture. Osteoporosis-attributable hip fracture numbers will rise from 8,375 to 11,353, vertebral fracture numbers will rise from 23,584 to 30,883, and distal forearm fracture numbers will rise from 4,209 to 5,186. Population-level osteoporosis-related direct medical inpatient costs per year will rise from 713.4 million Swiss francs (CHF) to CHF946.2 million. These figures correspond to 1.6% and 2.2% of Swiss health care expenditures in 2000. The modeling framework described can be applied to a wide variety of settings. It can be used to assess the impact of new prevention, diagnostic and treatment strategies. In Switzerland incidences of osteoporotic hip, vertebral and distal forearm fracture will rise by 33%, 27%, and 19%, respectively, between 2000 and 2020, if current prevention and treatment patterns are maintained. Corresponding absolute fracture numbers will rise by 36%, 31%, and 23%. Related direct medical inpatient costs are predicted to increase by 33%; however, this estimate is subject to uncertainty due to limited availability of input data.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper reports a comparison of three modeling strategies for the analysis of hospital mortality in a sample of general medicine inpatients in a Department of Veterans Affairs medical center. Logistic regression, a Markov chain model, and longitudinal logistic regression were evaluated on predictive performance as measured by the c-index and on accuracy of expected numbers of deaths compared to observed. The logistic regression used patient information collected at admission; the Markov model was comprised of two absorbing states for discharge and death and three transient states reflecting increasing severity of illness as measured by laboratory data collected during the hospital stay; longitudinal regression employed Generalized Estimating Equations (GEE) to model covariance structure for the repeated binary outcome. Results showed that the logistic regression predicted hospital mortality as well as the alternative methods but was limited in scope of application. The Markov chain provides insights into how day to day changes of illness severity lead to discharge or death. The longitudinal logistic regression showed that increasing illness trajectory is associated with hospital mortality. The conclusion is reached that for standard applications in modeling hospital mortality, logistic regression is adequate, but for new challenges facing health services research today, alternative methods are equally predictive, practical, and can provide new insights. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this dissertation, we propose a continuous-time Markov chain model to examine the longitudinal data that have three categories in the outcome variable. The advantage of this model is that it permits a different number of measurements for each subject and the duration between two consecutive time points of measurements can be irregular. Using the maximum likelihood principle, we can estimate the transition probability between two time points. By using the information provided by the independent variables, this model can also estimate the transition probability for each subject. The Monte Carlo simulation method will be used to investigate the goodness of model fitting compared with that obtained from other models. A public health example will be used to demonstrate the application of this method. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Authors discuss the effects that economic crises generate on the global market shares of tourism destinations, through a series of potential transmission mechanisms based on the main economic competitiveness determinants identified in the previous literature using a non-linear approach. Specifically a Markov Switching Regression approach is used to estimate the effect of two basic transmission mechanisms: reductions of internal and external tourism demands and falling investment.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Conformational transitions in proteins define their biological activity and can be investigated in detail using the Markov state model. The fundamental assumption on the transitions between the states, their Markov property, is critical in this framework. We test this assumption by analyzing the transitions obtained directly from the dynamics of a molecular dynamics simulated peptide valine-proline-alanine-leucine and states defined phenomenologically using clustering in dihedral space. We find that the transitions are Markovian at the time scale of ˜ 50 ps and longer. However, at the time scale of 30–40 ps the dynamics loses its Markov property. Our methodology reveals the mechanism that leads to non-Markov behavior. It also provides a way of regrouping the conformations into new states that now possess the required Markov property of their dynamics.