932 resultados para Marine sciences


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Tropical marginal seas (TMSs) are natural subregions of tropical oceans containing biodiverse ecosystems with conspicuous, valued, and vulnerable biodiversity assets. They are focal points for global marine conservation because they occur in regions where human populations are rapidly expanding. Our review of 11 TMSs focuses on three key ecosystems—coral reefs and emergent atolls, deep benthic systems, and pelagic biomes—and synthesizes, illustrates, and contrasts knowledge of biodiversity, ecosystem function, interaction between adjacent habitats, and anthropogenic pressures. TMSs vary in the extent that they have been subject to human influence—from the nearly pristine Coral Sea to the heavily exploited South China and Caribbean Seas—but we predict that they will all be similarly complex to manage because most span multiple national jurisdictions. We conclude that developing a structured process to identify ecologically and biologically significant areas that uses a set of globally agreed criteria is a tractable first step toward effective multinational and transboundary ecosystem management of TMSs.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The report provides a review of the current level of exchange in marine life data and its management in the UK taking into account the current structures that are in place between data providers, custodians and managers. In addition, the report makes recommendations on how data flow can be improved over the next few years to achieve greater exchange and interoperability within the marine sector.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Local-scale planning decisions are required by the existing Environmental Impact Assessment process to take account of the implications of a development on a range of environmental and social factors, and could therefore be supported by an ecosystem services approach. However, empirical assessments at a local scale within the marine environment have focused on only a single or limited set of services. This paper tests the applicability of the ecosystem services approach to environmental impact appraisal by considering how the identification and quantification of a comprehensive suite of benefits provided at a local scale might proceed in practice. A methodology for conducting an Environmental Benefits Assessment (EBA) is proposed, the underlying framework for which follows the recent literature by placing the emphasis on ecosystem benefits, as opposed to services. The EBA methodology also proposes metrics that can be quantified at local scale, and is tested using a case study of a hypothetical tidal barrage development in the Taw Torridge estuary in North Devon, UK. By suggesting some practical steps for assessing environmental benefits, this study aims to stimulate discussion and so advance the development of methods for implementing ecosystem service approaches at a local scale.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Front detection and aggregation techniques were applied to 300m resolution MERIS satellite ocean colour data for the first time, to describe frequently occurring shelf-sea fronts near to the Scottish coast. Medium resolution (1km) thermal and colour data have previously been used to analyse the distribution of surface fronts, though these cannot capture smaller frontal zones or those in close proximity to the coast, particularly where the coastline is convoluted. Seasonal frequent front maps, derived from both chlorophyll and SST data, revealed a number of key frontal zones, a subset of which were based on new insights into the sediment and plankton dynamics provided exclusively by the higher-resolution chlorophyll fronts. The methodology is described for applying colour and thermal front data to the task of identifying zones of ecological importance that could assist the process of defining marine protected areas. Each key frontal zone is analysed to describe its spatial and temporal extent and variability, and possible mechanisms. It is hoped that these tools can provide guidance on the dynamic habitats of marine fauna towards aspects of marine spatial planning and conservation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

1.Understanding which environmental factors drive foraging preferences is critical for the development of effective management measures, but resource use patterns may emerge from processes that occur at different spatial and temporal scales. Direct observations of foraging are also especially challenging in marine predators, but passive acoustic techniques provide opportunities to study the behaviour of echolocating species over a range of scales. 2.We used an extensive passive acoustic data set to investigate the distribution and temporal dynamics of foraging in bottlenose dolphins using the Moray Firth (Scotland, UK). Echolocation buzzes were identified with a mixture model of detected echolocation inter-click intervals and used as a proxy of foraging activity. A robust modelling approach accounting for autocorrelation in the data was then used to evaluate which environmental factors were associated with the observed dynamics at two different spatial and temporal scales. 3.At a broad scale, foraging varied seasonally and was also affected by seabed slope and shelf-sea fronts. At a finer scale, we identified variation in seasonal use and local interactions with tidal processes. Foraging was best predicted at a daily scale, accounting for site specificity in the shape of the estimated relationships. 4.This study demonstrates how passive acoustic data can be used to understand foraging ecology in echolocating species and provides a robust analytical procedure for describing spatio-temporal patterns. Associations between foraging and environmental characteristics varied according to spatial and temporal scale, highlighting the need for a multi-scale approach. Our results indicate that dolphins respond to coarser scale temporal dynamics, but have a detailed understanding of finer-scale spatial distribution of resources.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

An optimal search theory, the so-called Levy-flight foraging hypothesis(1), predicts that predators should adopt search strategies known as Levy flights where prey is sparse and distributed unpredictably, but that Brownian movement is sufficiently efficient for locating abundant prey(2-4). Empirical studies have generated controversy because the accuracy of statistical methods that have been used to identify Levy behaviour has recently been questioned(5,6). Consequently, whether foragers exhibit Levy flights in the wild remains unclear. Crucially, moreover, it has not been tested whether observed movement patterns across natural landscapes having different expected resource distributions conform to the theory's central predictions. Here we use maximum-likelihood methods to test for Levy patterns in relation to environmental gradients in the largest animal movement data set assembled for this purpose. Strong support was found for Levy search patterns across 14 species of open-ocean predatory fish (sharks, tuna, billfish and ocean sunfish), with some individuals switching between Levy and Brownian movement as they traversed different habitat types. We tested the spatial occurrence of these two principal patterns and found Levy behaviour to be associated with less productive waters (sparser prey) and Brownian movements to be associated with productive shelf or convergence-front habitats (abundant prey). These results are consistent with the Levy-flight foraging hypothesis(1,7), supporting the contention(8,9) that organism search strategies naturally evolved in such a way that they exploit optimal Levy patterns.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

As offshore windfarm (OWF) construction in the UK is progressing rapidly, monitoring of the economic and ecological effects of these developments is urgently needed. This is to enable both spatial planning and where necessary mitigation in an increasingly crowded marine environment. One approach to mitigation is co-location of OWFs and marine protected areas (MPAs). This systematic review has the objective to inform this co-location proposal and identify areas requiring further research. A limited number of studies addressing marine renewable energy structures and related artificial structures in coastal waters were found. The results of these studies display a change in species assemblages at artificial structures in comparison to naturally occurring habitats. An increase in hard substrata associated species, especially benthic bivalves, crustaceans and reef associated fish and a decrease in algae abundance were the dominant trends. Assemblages associated with complex concrete structures revealed greater similarity to natural hard substrata compared to those around steel structures. To consider marine renewable energy sites, especially large scale OWFs as MPAs, the dissimilar nature of assemblages on the structures themselves to natural communities should be considered. However positive effects were recorded on the abundance of commercially important crustacean species. This suggests potential for incorporation of OWFs as no fishing, or restricted activity zones within a wider MPA to aid fisheries augmentation. The limited available evidence highlights a requirement for significant further research involving long term monitoring at a variety of sites to better inform management options.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The combined consequences of the multi-stressors of pH and nutrient availability upon the growth of a marine diatom were investigated. Thalassiosira weissflogii was grown in N- or P-limited batch culture in sealed systems, with pH commencing at 8.2 (extant conditions) or 7.6 (ocean acidification [OA] conditions), and then pH was allowed to either drift with growth, or was held fixed. Results indicated that within the pH range tested, the stability of environmental pH rather than its value (i.e., OA vs. extant) fundamentally influenced biomass accumul-ation and C:N:P stoichiometry. Despite large changes in total alkalinity in the fixed pH systems, final biomass production was consistently greater in these systems than that in drifting pH systems. In drift systems, pH increased to exceed pH 9.5, a level of alkalinity that was inhibitory to growth. No statis-tically significant differences between pH treatments were measured for N:C, P:C or N:P ratios during nutrient-replete growth, although the diatom expre-ssed greater plasticity in P:C and N:P ratios than in N:C during this growth phase. During nutrient-deplete conditions, the capacity for uncoupled carbon fixa-tion at fixed pH was considerably greater than that measured in drift pH systems, leading to strong contrasts in C:N:P stoichiometry between these treatments. Whether environmental pH was stable or drifted directly influenced the extent of physiological stress. In contrast, few distinctions could be drawn between extant versus OA conditions for cell physiology.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Marine bivalves (Mytilus galloprovincialis) were exposed to titanium dioxide (10 mg L-1) either as engineered nanoparticles (nTiO(2); fresh, or aged under simulated sunlight for 7 days) or the bulk equivalent. Inductively coupled plasma-optical emission spectrometry analyses of mussel tissues showed higher Ti accumulation (>10-fold) in the digestive gland compared to gills. Nano-sized TiO2 showed greater accumulation than bulk, irrespective of ageing, particularly in digestive gland (>sixfold higher). Despite this, transcriptional expression of metallothionein genes, histology and histochemical analysis suggested that the bulk material was more toxic. Haemocytes showed significantly enhanced DNA damage, determined by the modified comet assay, for all treatments compared to the control, but no significant differences between the treatments. Our integrated study suggests that for this ecologically relevant organism photocatalytic ageing of nTiO(2) does not significantly alter toxicity, and that bulk TiO2 may be less ecotoxicologically inert than previously assumed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The open service network for marine environmental data (NETMAR) project uses semantic web technologies in its pilot system which aims to allow users to search, download and integrate satellite, in situ and model data from open ocean and coastal areas. The semantic web is an extension of the fundamental ideas of the World Wide Web, building a web of data through annotation of metadata and data with hyperlinked resources. Within the framework of the NETMAR project, an interconnected semantic web resource was developed to aid in data and web service discovery and to validate Open Geospatial Consortium Web Processing Service orchestration. A second semantic resource was developed to support interoperability of coastal web atlases across jurisdictional boundaries. This paper outlines the approach taken to producing the resource registry used within the NETMAR project and demonstrates the use of these semantic resources to support user interactions with systems. Such interconnected semantic resources allow the increased ability to share and disseminate data through the facilitation of interoperability between data providers. The formal representation of geospatial knowledge to advance geospatial interoperability is a growing research area. Tools and methods such as those outlined in this paper have the potential to support these efforts.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Estimating primary production at large spatial scales is key to our understanding of the global carbon cycle. Algorithms to estimate primary production are well established and have been used in many studies with success. One of the key parameters in these algorithms is the chlorophyll-normalised production rate under light saturation (referred to as the light saturation parameter or the assimilation number). It is known to depend on temperature, light history and nutrient conditions, but assigning a magnitude to it at particular space-time points is difficult. In this paper, we explore two models to estimate the assimilation number at the global scale from remotely-sensed data that combine methods to estimate the carbon-to-chlorophyll ratio and the maximum growth rate of phytoplankton. The inputs to the algorithms are the surface concentration of chlorophyll, seasurface temperature, photosynthetically-active radiation af the surface of the sea, sea surface nutrient concentration and mixed-layer depth. A large database of in situ estimates of the assimilation number is used to develop the models and provide elements of validation. The comparisons with in situ observations are promising and global maps of assimilation number are produced.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

1.Identifying priority areas for marine vertebrate conservation is complex because species of conservation concern are highly mobile, inhabit dynamic habitats and are difficult to monitor. 2.Many marine vertebrates are known to associate with oceanographic fronts – physical interfaces at the transition between water masses – for foraging and migration, making them important candidate sites for conservation. Here, we review associations between marine vertebrates and fronts and how they vary with scale, regional oceanography and foraging ecology. 3.Accessibility, spatiotemporal predictability and relative productivity of front-associated foraging habitats are key aspects of their ecological importance. Predictable mesoscale (10s–100s km) regions of persistent frontal activity (‘frontal zones’) are particularly significant. 4.Frontal zones are hotspots of overlap between critical habitat and spatially explicit anthropogenic threats, such as the concentration of fisheries activity. As such, they represent tractable conservation units, in which to target measures for threat mitigation. 5.Front mapping via Earth observation (EO) remote sensing facilitates identification and monitoring of these hotspots of vulnerability. Seasonal or climatological products can locate biophysical hotspots, while near-real-time front mapping augments the suite of tools supporting spatially dynamic ocean management. 6.Synthesis and applications. Frontal zones are ecologically important for mobile marine vertebrates. We surmise that relative accessibility, predictability and productivity are key biophysical characteristics of ecologically significant frontal zones in contrasting oceanographic regions. Persistent frontal zones are potential priority conservation areas for multiple marine vertebrate taxa and are easily identifiable through front mapping via EO remote sensing. These insights are useful for marine spatial planning and marine biodiversity conservation, both within Exclusive Economic Zones and in the open oceans.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

ABSTRACT: Oceanographic fronts are physical interfaces between water masses that differ in properties such as temperature, salinity, turbidity and chl a enrichment. Bio-physical coupling along fronts can lead to the development of pelagic biodiversity hotspots. A diverse range of marine vertebrates have been shown to associate with fronts, using them as foraging and migration habitats. Elucidation of the ecological significance of fronts generates a better understanding of marine ecosystem functioning, conferring opportunities to improve management of anthropogenic activities in the oceans. This study presents novel insight into the oceanographic drivers of habitat use in a population of marine turtles characterised by an oceanic-neritic foraging dichotomy. Using satellite tracking data from adult female loggerhead turtles nesting at Cape Verde (n = 12), we test the hypothesis that oceanic-foraging loggerheads associate with mesocale (10s – to 100s of km) thermal fronts. We use high-resolution (1 km) composite front mapping to characterise frontal activity in the Canary Current Large Marine Ecosystem (LME) over 2 temporal scales: (1) seasonal front frequency and (2) 7-day front metrics. Our use-availability analysis indicates that oceanic loggerheads show a preference for the highly productive upwelling region between Cape Verde and mainland Africa, an area of intense frontal activity. Within the upwelling region, turtles appear to forage epipelagically around mesoscale thermal fronts, exploiting profitable foraging opportunities resulting from physical aggregation of prey.