988 resultados para Marine Sediments


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbon dioxide, ammonia, and reactive phosphate in the interstitial water of three sediment cores of the West African continental margin result from oxidation of sedimentary organic matter by bacterial sulfate reduction. The proposed model is a modification of one initially suggested by Richards (1965) for processes in anoxic waters: (CH2O)106 (NH3)8 (H3PO4) (0.7-0.2) + 53 SO4**2- =106 CO2 + 106 H20 + 8 NH3 + (0.7 - 0.2) H3PO4 + 53 S**2- The amount of reduced interstitial sulfate, the carbon-to-nitrogen-to-phosphorus atomic ratio of the sedimentary organic matter, as well as small amounts of carbon dioxide, which precipitated as interstitial calcium carbonate, are included in the general oxidation-reduction reaction. Preferential loss of nitrogen and phosphorus from organic matter close to the surface was recorded in both the interstitial water and sediment composition. It appeared that in deeper sections of the core organic carbon compounds were oxidized which were probably in an even lower oxidation state than that indicated by the proposed model. An estimated 2 % of the amount of organic matter still present was oxidized after it became incorporated into the sediment; whereas sulfide sulfur contents indicate that a much larger percentage (15-20%) seemed to have been subject to bacterial oxidation during the Pleistocene period, when a very thin oxidizing layer on the sediment allowed the above decomposition process to start relatively early favoured by almost fresh organic matter, and by almost unrestricted exchange of sulfate with the overlying water.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

At Brisbane Airport, the construction of a diversion channel for Kedron Brook exposed a former beach, low cliff and sand spit, which, with their associated sediments and acid sulfate soils, demonstrate a postglacial high sea-level 1.3 - 1.4 m above present mean sea-level. The beach appears to date from 4000 to 5000 y BP. It varies in level where it lies above soft ground; these variations, and sag depressions that follow buried streamlines, indicate sediment consolidation since withdrawal of the sea from the former shore. Most of the area consists of former estuarine deposits, mangrove and saline marshes, and stranded tidal flats on which acid sulfate soils are widely developed. The modern landforms mostly reproduce subsurface features, to the extent that the surface relief replicates the landscape transgressed by the sea 7000 years ago. A small rise of sea-level possibly to +0.65 m occurred about 2000-3000 years ago. Foredunes near the present shore that are related to a slightly lower level 1000 - 500 years ago (-0.25 m) are currently subject to wave erosion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated the influence of solar radiation on the transfer of organic matter from the particulate to dissolved phase during resuspension of coastal sediments collected from seven sites across Florida Bay (organic carbon values ranged from 2% to 9% by weight). Sediments were resuspended in oligotrophic seawater for 48 h in 1-liter quartz flasks in the dark and under simulated solar radiation (SunTest XLS+) at wet weight concentrations of 100 mg L21 and 1 g L21 (dry weights ranged from 27 to 630 mg L21). There were little to no dissolved organic carbon (DOC) increases in dark resuspensions, but substantial DOC increases occurred in irradiated resuspensions. DOC levels increased 4 mg C L21 in an irradiated 1 g L21 suspension (dry weight 400 mg L21) of an organic-rich (7% organic carbon) sediment. At a particle load commonly found in coastal waters (dry weight 40 mg L21), an irradiated suspension of the same organic-rich sediment produced 1 mg C L21. DOC increases in irradiated resuspensions were well-correlated with particulate organic carbon (POC) added. Photodissolution of POC ranged from 6% to 15% at high sediment levels and 10% to 33% at low sediment levels. Parallel factor analysis modeling of excitation-emission matrix fluorescence data (EEM PARAFAC) suggested the dissolved organic matter (DOM) produced during photodissolution included primarily humic-like components and a less important input of protein-like components. Principal component analysis (PCA) of EEM data revealed a marked similarity in the humic character of photodissolved DOM from organic-rich sediments and the humic character of Florida Bay waters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sr, Nd, and Os isotopic data are presented for sediments from diverse locations in the Bay of Bengal. These data allow the samples to be divided into three groups, related to their sedimentary contexts. The first group, mainly composed of sediments from the shelf off Bangladesh and the currently active fan, has Sr and Nd characteristics consistent with a dominantly Himalayan source. Their 187Os/188Os ratios (~1.2-1.5) show that the average detrital material delivered by the Ganga-Brahmaputra (G-B) river system is not unusually radiogenic. A large difference in 187Os/188Os ratio exists between these Bengal Fan sediments and Ganga bedloads (187Os/188Os ~2.5, Pierson-Wickmann et al. (2000, doi:10.1016/S0012-821X(00)00003-0)). This difference mainly reflects addition of a less radiogenic Brahmaputra component, though mineralogical sorting and loss of radiogenic Os during transport may also play some role. The second sample group contains sediments from elsewhere in the Bay, particularly those located on the continental slope. They display Os isotopic compositions (0.99-1.11) similar to that of present seawater and higher Os and Re concentrations. These characteristics suggest the presence of a large hydrogenous contribution, consistent with the lower sedimentation rate of these samples. Sr and Nd ratios indicate that a significant fraction of these sediments is derived from erosion of non-Himalayan sources, such as the Indo-Burman range. These observations could be explained by the deflection of sediments from the G-B river system by westward currents in the head of the Bay. The third group contains only one sample, but shows that in addition to a Himalayan source, sediment discharge from Sri Lanka may influence the detrital component in the distal part of the fan. The similarity between the isotopic compositions of the group I R/V Sonne samples and those of Ocean Drilling Program Leg 116 (France-Lanord et al., 1993; Reisberg et al., 1997, doi:10.1016/S0012-821X(00)00003-0) suggests that the material eroding in the Himalayas has been roughly constant since the Miocene. The high Os isotopic ratios of leachates of both Sonne group I and Miocene Leg 116 sediments imply that much of the leachable highly radiogenic Os component was conserved during transport through the estuary or interaction with seawater. In constrast, samples with lower, but still relatively high, sedimentation rates (Sonne groups II and III and Pliocene Leg 116) seem to have significantly adsorbed or exchanged Os and Re with seawater. This suggests that in some cases the Os isotopic ratios of leachates of detrital sediments can be used to constrain the ancient marine Os record, or conversely, to date unfossiliferous sediments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sr and Nd isotopic compositions of Arctic marine sediments characterize changes of sediment source regions and trace shelf-ocean particle pathways during glacial-interglacial transitions in the eastern Arctic Ocean. In the 140-ka sedimentary record of a marine core from Yermak Plateau, north of Svalbard, 87Sr/86Sr ratios and epsion-Nd values vary between 0.717 and 0.740 and 39.3 and 314.9, respectively. Sr and Nd isotopic composition both change characteristically during glacial-interglacial cycles and are correlated with the extension of the Svalbard/Barents Sea ice sheet (SBIS). The downcore variation in Sr and Nd isotopic composition indicates climatically induced changes in sediment provenance from two isotopically distinct end-members: (1) Eurasian shelf sediments as a distal source; and (2) Svalbard bedrock as a proximal source that coincide with a change in transport mechanism from sea ice to glacial ice. During glacier advance from Svalbard and intensified glacial bedrock erosion, epsion-Nd values decrease gradually to a minimum value of 314.9 due to increased input of crystalline Svalbard bedrock material. During glacial maxima, the SBIS covered the entire Barents Sea shelf and supplied increasing amounts of Eurasian shelf material to the Arctic Ocean as ice rafted detritus (IRD). Epsion-Nd values in glacial sediments reach maximum values that are comparable to the average value of modern Eurasian shelf and sea ice sediments (epsion-Nd = 310.3). This confirms ice rafting as a major sediment transport mechanism for Eurasian shelf sediments into the Arctic Ocean and trace a sediment origin from the Kara Sea/Laptev Sea shelf area. After the decay of the shelf-based SBIS, the glacial shelf sediment spikes during glacial terminations I (epsion-Nd = 310.6) and II (epsion-Nd = 310.1) epsion-Nd values rapidly decrease to values of 312.5 typical for interglacial averages. The downcore Sr isotopic composition is anticorrelated to the Nd isotopic composition, but may be also influenced by grain-size effects. In contrast, the Nd isotopic composition in clay- to silt-size fractions of one bulk sediment sample is similar to within 0.3-0.8 epsion-Nd units and seems to be a grain-size independent provenance tracer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Organic carbon occluded in diatom silica is assumed to be protected from degradation in the sediment. d13C from diatom carbon (d13C(diatom)) therefore potentially provides a signal of conditions during diatom growth. However, there have been few studies based on d13C(diatom). Numerous variables can influence d13C of organic matter in the marine environment (e.g., salinity, light, nutrient and CO2 availability). Here we compare d13C(diatom) and d13C(TOC) from three sediment records from individual marine inlets (Rauer Group, East Antarctica) to (i) investigate deviations between d13C(diatom) and d13C(TOC), to (ii) identify biological and environmental controls on d13C(diatom) and d13C(TOC), and to (iii) discuss d13C(diatom) as a proxy for environmental and climate reconstructions. The records show individual d13C(diatom) and d13C(TOC) characteristics, which indicates that d13C is not primarily controlled by regional climate or atmospheric CO2 concentration. Since the inlets vary in water depths offsets in d13C are probably related to differences in water column stratification and mixing, which influences redistribution of nutrients and carbon within each inlet. In our dataset changes in d13C(diatom) and d13C(TOC) could not unequivocally be ascribed to changes in diatom species composition, either because the variation in d13C(diatom) between the observed species is too small or because other environmental controls are more dominant. Records from the Southern Ocean show depleted d13C(diatom) values (1-4 per mil) during glacial times compared to the Holocene. Although climate variability throughout the Holocene is low compared to glacial/interglacial variability, we find variability in d13C(diatom), which is in the same order of magnitude. d13C of organic matter produced in the costal marine environment seems to be much more sensitive to environmental changes than open ocean sites and d13C is of strongly local nature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Light hydrocarbon (C1-C8) profiles are compared for three wells of varying maturities: two immature DSDP wells (Site 397 near the Canary Islands and Site 530A near the Walvis Ridge in the south-east Atlantic) and a mature well, the East Cameron well in the Texas Gulf Coast. Primary migration of C1 and C2 appears to be occurring in all of the sedimentary rocks examined. Primary migration of C3+ components becomes important only as fine-grained sedimentary rocks enter the catagenetic hydrocarbon generation zone or over short distances in more permeable sections. Lateral migration along bedding planes was more important than vertical migration in sedimentary rocks of all maturities. The lightest (methane, ethane and propane gases) hydrocarbon show greater fractionation than do the C4-C8 alkanes which generally show minimal fractionation during the migrational process. Subsurface diffusion coefficients for these p.p.b. quantities of C2-C5 alkanes from immature sediments from DSDP Site 530 are estimated to be several orders of magnitude less than values reported in the literature for diffusion of much larger amounts of these compounds from mature water wet sediments into air or sandstones. Since our calculations suggest light hydrocarbons are present in amounts less than their reported solubilities in pure water at 25°C, we postulate that the sediment organic matter has a substantial effect on retarding the movement of these light hydrocarbons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the geosphere, germanium (Ge) has a chemical behavior close to that of silicon (Si), and Ge commonly substitutes for Si (in small proportions) in silicates. Studying the evolution of the respective proportions of Ge and Si through time allows us to better constrain the global Si cycle. The marine inventory of Ge present as dissolved germanic acid is facing two main sinks known through the study of present sediments: 1) incorporation into diatom frustules and transfer to sediments by these "shuttles", 2) capture of Ge released to pore water through frustule dissolution by authigenic mineral phases forming within reducing sediments. Our goals are to determine whether such a bio-induced transfer of Ge is also achieved by radiolarian and whether Ge could be trapped directly from seawater into authigenic phases with no intervention of opal-secreting organisms (shuttles). To this end, we studied two Paleozoic radiolarite formations and geological formations dated of Devonian, Jurassic and Cretaceous, deposited under more or less drastic redox conditions. Our results show that the Ge/Si values observed for these radiolarites are close to (slightly above) those measured from modern diatoms and sponges. In addition, our results confirm what is observed with some present-day reducing sediments: the ancient sediments that underwent reducing depositional conditions are authigenically enriched in Ge. Furthermore, it is probable that at least a part of the authigenic Ge came directly from seawater. The recurrence and extent (through time and space) of anoxic conditions affecting sea bottoms have been quite important through the geological times; consequently, the capture of Ge by reducing sediments must have impacted Ge distribution and in turn, the evolution of the seawater Ge/Si ratio.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recrystallization processes in marine sediments can alter the extent to which biogenic calcite composition serves as a proxy of oceanic chemical and isotopic history. Models of calcite recrystallization developed to date have resulted in significant insights into these processes, but are not completely adequate to describe the conditions of recrystallization. Marine sediments frequently have concentration gradients in interstitial dissolved calcium, magnesium, and strontium which have probably evolved during sediment accumulation. Realistic, albeit simplified, models of the temporal evolution of interstitial water profiles of Ca, Mg, and Sr were used with several patterns of recrystallization rate variation to predict the composition of recrystallized inorganic calcite. Comparison of predictions with measured Mg/Ca and Sr/Ca ratios in severely altered calcite samples from several Deep Sea Drilling Project sites demonstrates that models incorporating temporal variation in interstitial water composition more successfully predict observed calcite compositions than do models which rely solely on present-day interstitial water chemistry. Temporal changes in interstitial composition are particularly important in interpreting Mg/Ca ratios in conjunction with Sr/Ca ratios. Estimates of Mg distribution coefficients from previous observations in marine sediments, much lower than those in laboratory studies of inorganic calcite, are confirmed by these results. Evaluation of the effects of diagenetic alteration of biogenic calcium carbonate sediment must be a site-specific process, taking into account accumulation history, present interstitial chemistry and its variation in the past, and sample depths and ages.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper discusses the advantages of using a combined environmagnetic and geochemical approach to the provenance and characterization of distal IRDs occurring during the Last Glacial Period in core CI12PC3 from the Galicia Interior Basin (GIB). Six Heinrich layers (HL1-6) have been identified in the area in base to the detection of distinct populations of exotic magnetic mineral assemblages alien to the local/regional sedimentation environment. Their extension has been determined by Ca/Sr and Si/Sr ratios and their provenance by 143Nd/144Nd and 87Sr/86Sr isotopic ratios and FORCs. The sedimentary expression of HL is characterized by the presence of distal Ice Rafted Detritus (IRD). Distal IRD magnetic signatures in the GIB consist of (i) an increase of one order of magnitude in the peak amplitude of magnetic susceptibility from background values, (ii) a general coarsening of the magnetic grain size in a mineral assemblage dominated by titano-magnetites, (iii) FORC distributions pushing towards the coarse MD or PSD component, and (iv) thermomagnetic curves depicting the occurrence of several magnetite phases. These four features are very different from the fine-grained biogenic magnetic assemblages characterized by the combination of lower MS and higher coercivity values that dominate the predominant mixtures of the non-interacting SSD and PSD components in the non-IRD influenced background sedimentation. Our results show that the last 70.000 yr of sedimentation in the GIB were controlled by the relative contribution of local detrital material derived from the Iberian Variscan Chain and IRD alien material from the iceberg melting during the Heinrich Events. They also show two main IRD provenance fields: Europe and Canada. And that the later is more important for for HL1, HL2, HL4 and HL5. FORCs analysis complemented the isotopic information and provided a very unique information, indicating that glacial flour may not always have the same provenance as IRD and that ice-melted derived suspended sediment has its own dynamics and may reach further and/or persists longer than IRD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Organic-rich subsurface marine sediments were taken by gravity coring up to a depth of 10 m below seafloor at six stations from the anoxic Black Sea and the Benguela upwelling system off Namibia during the research cruises Meteor 72-5 and 76-1, respectively. The quantitative microbial community composition at various sediment depths was analyzed using total cell counting, catalyzed reporter deposition fluorescence in situ hybridization (CARD FISH) and quantitative real-time PCR (Q-PCR). Total cell counts decreased with depths from 10(9) to 10(10) cells/mL at the sediment surface to 10(7)-10(9) cells/mL below one meter depth. Based on CARD FISH and Q-PCR analyses overall similar proportions of Bacteria and Archaea were found. The down-core distribution of prokaryotic and eukaryotic small subunit ribosomal RNA genes (16S and 18S rRNA) as well as functional genes involved in different biogeochemical processes was quantified using Q-PCR. Crenarchaeota and the bacterial candidate division JS-1 as well as the classes Anaerolineae and Caldilineae of the phylum Chloroflexi were highly abundant. Less abundant but detectable in most of the samples were Eukarya as well as the metal and sulfate-reducing Geobacteraceae (only in the Benguela upwelling influenced sediments). The functional genes cbbL, encoding for the large subunit of RuBisCO, the genes dsrA and aprA, indicative of sulfate-reducers as well as the mcrA gene of methanogens were detected in the Benguela upwelling and Black Sea sediments. Overall, the high organic carbon content of the sediments goes along with high cell counts and high gene copy numbers, as well as an equal abundance of Bacteria and Archaea.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sulfate-reducing prokaryotes (SRP) are ubiquitous and quantitatively important members in many ecosystems, especially in marine sediments. However their abundance and diversity in subsurface marine sediments is poorly understood. In this study, the abundance and diversity of the functional genes for the enzymes adenosine 5'-phosphosulfate reductase (aprA) and dissimilatory sulfite reductase (dsrA) of SRP in marine sediments of the Peru continental margin and the Black Sea were analyzed, including samples from the deep biosphere (ODP site 1227). For aprA quantification a Q-PCR assay was designed and evaluated. Depth profiles of the aprA and dsrA copy numbers were almost equal for all sites. Gene copy numbers decreased concomitantly with depth from around 10(8)/g sediment close to the sediment surface to less than 10(5)/g sediment at 5 mbsf. The 16S rRNA gene copy numbers of total bacteria were much higher than those of the functional genes at all sediment depths and used to calculate the proportion of SRP to the total Bacteria. The aprA and dsrA copy numbers comprised in average 0.5-1% of the 16S rRNA gene copy numbers of total bacteria in the sediments up to a depth of ca. 40 mbsf. In the zone without detectable sulfate in the pore water from about 40-121 mbsf (Peru margin ODP site 1227), only dsrA (but not aprA) was detected with copy numbers of less than 10(4)/g sediment, comprising ca. 14% of the 16S rRNA gene copy numbers of total bacteria. In this zone, sulfate might be provided for SRP by anaerobic sulfide oxidation. Clone libraries of aprA showed that all isolated sequences originate from SRP showing a close relationship to aprA of characterized species or form a new cluster with only distant relation to aprA of isolated SRP. For dsrA a high diversity was detected, even up to 121 m sediment depth in the deep biosphere.