961 resultados para Marine Conservation


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Thesis (Master's)--University of Washington, 2016-06

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Marine mammals exploit the efficiency of sound propagation in the marine environment for essential activities like communication and navigation. For this reason, passive acoustics has particularly high potential for marine mammal studies, especially those aimed at population management and conservation. Despite the rapid realization of this potential through a growing number of studies, much crucial information remains unknown or poorly understood. This research attempts to address two key knowledge gaps, using the well-studied bottlenose dolphin (Tursiops truncatus) as a model species, and underwater acoustic recordings collected on four fixed autonomous sensors deployed at multiple locations in Sarasota Bay, Florida, between September 2012 and August 2013. Underwater noise can hinder dolphin communication. The ability of these animals to overcome this obstacle was examined using recorded noise and dolphin whistles. I found that bottlenose dolphins are able to compensate for increased noise in their environment using a wide range of strategies employed in a singular fashion or in various combinations, depending on the frequency content of the noise, noise source, and time of day. These strategies include modifying whistle frequency characteristics, increasing whistle duration, and increasing whistle redundancy. Recordings were also used to evaluate the performance of six recently developed passive acoustic abundance estimation methods, by comparing their results to the true abundance of animals, obtained via a census conducted within the same area and time period. The methods employed were broadly divided into two categories – those involving direct counts of animals, and those involving counts of cues (signature whistles). The animal-based methods were traditional capture-recapture, spatially explicit capture-recapture (SECR), and an approach that blends the “snapshot” method and mark-recapture distance sampling, referred to here as (SMRDS). The cue-based methods were conventional distance sampling (CDS), an acoustic modeling approach involving the use of the passive sonar equation, and SECR. In the latter approach, detection probability was modelled as a function of sound transmission loss, rather than the Euclidean distance typically used. Of these methods, while SMRDS produced the most accurate estimate, SECR demonstrated the greatest potential for broad applicability to other species and locations, with minimal to no auxiliary data, such as distance from sound source to detector(s), which is often difficult to obtain. This was especially true when this method was compared to traditional capture-recapture results, which greatly underestimated abundance, despite attempts to account for major unmodelled heterogeneity. Furthermore, the incorporation of non-Euclidean distance significantly improved model accuracy. The acoustic modelling approach performed similarly to CDS, but both methods also strongly underestimated abundance. In particular, CDS proved to be inefficient. This approach requires at least 3 sensors for localization at a single point. It was also difficult to obtain accurate distances, and the sample size was greatly reduced by the failure to detect some whistles on all three recorders. As a result, this approach is not recommended for marine mammal abundance estimation when few recorders are available, or in high sound attenuation environments with relatively low sample sizes. It is hoped that these results lead to more informed management decisions, and therefore, more effective species conservation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The molecular profiling system was developed using directed terminal-restriction fragment length polymorphism (dT-RFLP) to characterize soil nematode assemblages by relative abundance of feeding guilds and validation by comparison to traditional morphological method. The good performance of these molecular tools applied to soil nematodes assemblages create an opportunity to develop a novel approach for rapid assessment of the biodiversity changes of benthic nematodes assemblages of marine and estuarine sediments. The main aim of this research is to combine morphological and molecular analysis of estuarine nematodes assemblages, to establish a tool for fast assessment of the biodiversity changes within habitat recovery of Zostera noltii seagrass beds; and validate the dT-RFLP as a high-throughput tool to assess the system recovery. It was also proposed to develop a database of sequences related to individuals identified at species level to develop a new taxonomic reference system. A molecular phylogenetic analysis of the estuarine nematodes has being performed. After morphological identification, barcoding of 18S rDNA are being determined for each nematode species and the results have shown a good degree of concordance between traditional morphology-based identification and DNA sequences. The digest strategy developed for soil nematodes is not suitable for marine nematodes. Then five samples were cloned and sequenced and the sequence data was used to design a new dT-RFLP strategy to adapt this tool to marine assemblages. Several solutions were presented by DRAT and tested empirically to select the solution that cuts most efficiently, separating the different clusters. The results of quantitative PCR showed differences in nematode density between two sampling stations according the abundance of the nematode density obtained by the traditional methods. These results suggest that qPCR could be a robust tool for enumeration of nematode abundance, saving time.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Sawfishes (Chondrichthyes, Pristidae) are considered one of the most endangered families among elasmobranchs. Extensive efforts are required worldwide to gather solid information on historical and recent changes in the composition/range of species. In this study, we have implemented an integrative approach to characterize the species diversity and the abundance of historical rostra of sawfishes from museums and private collections of the Mediterranean area. The identification at the species level of 172 dried rostra was carried out through the integration of both traditional and geometric morphometric techniques with molecular tools, allowing the assessment of a robust methodical approach to discriminate species. In addition, we analysed 35 rostral teeth to clarify the past distribution of sawfish species considering the isotopic composition of oxygen and carbon. The morphometric, molecular, and geographical characterization of samples was accompanied by the preliminary evaluation of growth structures and the inspection of the strontium isotope composition in two teeth to unravel movement patterns of individuals across different salinities of water. Results were integrated with currently available data from public repositories and showed that the historical specimens belonged to four nominal species: Pristis zijsron (81), Anoxypristis cuspidata (39), P. pristis (30), and P. pectinata (22). An identification error of 5.41% emerged in the morphological distinction of rostra between juvenile individuals of P. pectinata and P. zijsron. The new approach of carbon and oxygen isotopes, implemented for the first time in these taxa, permitted the identification of the high-probability habitat preferences of these benthopelagic elasmobranchs in about 50% of the analysed specimens. Using this multidisciplinary approach, we successfully assigned the numerous museum rostra with lacking data to a given species and identified their candidate geographical origin, retrieving novel information and data for understanding the species distribution and ecology of past, sometimes locally/regionally extinct sawfish faunas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many harvested marine and terrestrial populations have segments of their range protected in areas free from exploitation. Reasons for areas being protected from harvesting include conservation, tourism, research, protection of breeding grounds, stock recovery, harvest regulation, or habitat that is uneconomical to exploit. In this paper we consider the problem of optimally exploiting a single species local population that is connected by dispersing larvae to an unharvested local population. We define a spatially-explicit population dynamics model and apply dynamic optimization techniques to determine policies for harvesting the exploited patch. We then consider how reservation affects yield and spawning stock abundance when compared to policies that have not recognised the spatial structure of the metapopulation. Comparisons of harvest strategies between an exploited metapopulation with and without a harvest refuge are also made. Results show that in a 2 local population metapopulation with unidirectional larval transfer, the optimal exploitation of the harvested population should be conducted as if it were independent of the reserved population. Numerical examples suggest that relative source populations should be exploited if the objective is to maximise spawning stock abundance within a harvested metapopulation that includes a protected local population. However, this strategy can markedly reduce yield over a sink harvested reserve system and may require strict regulation for conservation goals to be realised. If exchange rates are high, results indicate that spawning stock abundance can be less in a reserve system than in a fully exploited metapopulation. In order to maximise economic gain in the reserve system, results indicate that relative sink populations should be harvested. Depending on transfer levels, loss in harvest through reservation can be minimal, and is likely to be compensated by the potential environmental and economic benefits of the reserve.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study is to create a two-tiered assessment combining restoration and conservation, both needed for biodiversity management. The first tier of this approach assesses the condition of a site using a standard bioassessment method, AUSRIVAS, to determine whether significant loss of biodiversity has occurred because of human activity. The second tier assesses the conservation value of sites that were determined to be unimpacted in the first step against a reference database. This ensures maximum complementarity without having to set a priori target areas. Using the reference database, we assign site-specific and comparable coefficients for both restoration (Observed/Expected taxa with > 50% probability of occurrence) and conservation values (O/E taxa with < 50%, rare taxa). In a trial on 75 sites on rivers around Sydney, NSW, Australia we were able to identify three regions: (1) an area that may need restoration; (2) an area that had a high conservation value and; (3) a region that was identified as having significant biodiversity loss but with high potential to respond to rehabilitation and become a biodiversity hotspot. These examples highlight the use of the new framework as a comprehensive system for biodiversity assessment.