998 resultados para Manufacturer’s pallet loading problem


Relevância:

30.00% 30.00%

Publicador:

Resumo:

High drug loading (DL) carrier is an effective way to cure the cancerous cells. High drug loading is also one of the key issues in the drug delivery research, especially the colonic drug delivery system by oral administration. The times of drug intake could be remarkably reduced if high drug loading carriers are administered. At the same time, the related formulation materials could be effectively utilized. One major obstacle with the preparation of this system is the difficulty to encapsulate the hydrophilic drug into hydrophobic encapsulation polymer. A design of high drug loading delivery system with biodegradable, biocompatible materials and optimization of the fabrication process is a potential solution to solve the problem. So in this research, 5-Fluorouracil (5-FU) loaded Poly (lactide-co-glycolide) (PLGA) nanoparticles were prepared by double emulsion and solvent evaporation method. Several fabrication parameters including theoretical drug loading, volume ratio of outer water phase to the first emulsion, pH value of outer aqueous phase and emulsifier PVA concentration were optimized to get a high drug loading nanoparticles. The result shows that with the increase of theoretical drug loading, the actual drug loading increased gradually. When adjusted the pH value of outer aqueous phase to the isoelectric point (8.02) of 5-Fluorouracil, the drug loading exhibited a higher one compared to other pH value solution. Relative higher volume ratio of outer water phase to the first emulsion was also beneficial for the enhancement of drug loading. But the nanoparticles size increased simultaneously due to the lower shearing force. When increased the PVA concentration, the drug loading showed an increase first and following a drop.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

According to recent research carried out in the foundry sector, one of the most important concerns of the industries is to improve their production planning. A foundry production plan involves two dependent stages: (1) determining the alloys to be merged and (2) determining the lots that will be produced. The purpose of this study is to draw up plans of minimum production cost for the lot-sizing problem for small foundries. As suggested in the literature, the proposed heuristic addresses the problem stages in a hierarchical way. Firstly, the alloys are determined and, subsequently, the items that are produced from them. In this study, a knapsack problem as a tool to determine the items to be produced from furnace loading was proposed. Moreover, we proposed a genetic algorithm to explore some possible sets of alloys and to determine the production planning for a small foundry. Our method attempts to overcome the difficulties in finding good production planning presented by the method proposed in the literature. The computational experiments show that the proposed methods presented better results than the literature. Furthermore, the proposed methods do not need commercial software, which is favorable for small foundries. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In different problems of Elasticity the definition of the optimal gcometry of the boundary, according to a given objective function, is an issue of great interest. Finding the shape of a hole in the middle of a plate subjected to an arbitrary loading such that the stresses along the hole minimizes some functional or the optimal middle curved concrete vault for a tunnel along which a uniform minimum compression are two typical examples. In these two examples the objective functional depends on the geometry of the boundary that can be either a curve (in case of 2D problems) or a surface boundary (in 3D problems). Typically, optimization is achieved by means of an iterative process which requires the computation of gradients of the objective function with respect to design variables. Gradients can by computed in a variety of ways, although adjoint methods either continuous or discrete ones are the more efficient ones when they are applied in different technical branches. In this paper the adjoint continuous method is introduced in a systematic way to this type of problems and an illustrative simple example, namely the finding of an optimal shape tunnel vault immersed in a linearly elastic terrain, is presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-08

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new solution to the millionaire problem is designed on the base of two new techniques: zero test and batch equation. Zero test is a technique used to test whether one or more ciphertext contains a zero without revealing other information. Batch equation is a technique used to test equality of multiple integers. Combination of these two techniques produces the only known solution to the millionaire problem that is correct, private, publicly verifiable and efficient at the same time.