999 resultados para Mantle plume


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The mantle transition zone is defined by two seismic discontinuities, nominally at 410 and 660 km depth, which result from transformations in the mineral olivine. The topography of these discontinuities provides information about lateral temperature changes in the transition zone. In this work, P-to-S conversions from teleseismic events recorded at 32 broadband stations in the Borborema Province were used to determine the transition zone thickness beneath this region and to investigate whether there are lateral temperature changes within this depth range. For this analysis, stacking and migration of receiver functions was performed. In the Borborema Province, geophysical studies have revealed a geoid anomaly which could reflect the presence of a thermal anomaly related to the origin of intraplate volcanism and uplift that marked the evolution of the Province in the Cenozoic. Several models have been proposed to explain these phenomena, which include those invoking the presence of a deep-seated mantle plume and those invoking shallower sources, such as small-scale convection cells. The results of this work show that no thermal anomalies are present at transition zone depths, as significant variations in the transition zone thickness were not observed. However, regions of depressed topography for both discontinuities (410 and 660 km) that approximately overlap in space were identified, suggesting that lower-thanaverage, lateral variations in seismic velocity above 410 km depth may exist below the the Borborema Province. This is consistent with the presence of a thermally-induced, low-density body independently inferred from analysis of geoid anomalies. Therefore, the magma source responsible for the Cenozoic intraplate volcanism and related uplift in the Province, is likely to be confined above the upper mantle transition zone.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Oceanic flood basalts are poorly understood, short-term expressions of highly increased heat flux and mass flow within the convecting mantle. The uniqueness of the Caribbean Large Igneous Province (CLIP, 92-74 Ma) with respect to other Cretaceous oceanic plateaus is its extensive sub-aerial exposures, providing an excellent basis to investigate the temporal and compositional relationships within a starting plume head. We present major element, trace element and initial Sr-Nd-Pb isotope composition of 40 extrusive rocks from the Caribbean Plateau, including onland sections in Costa Rica, Colombia and Curaçao as well as DSDP Sites in the Central Caribbean. Even though the lavas were erupted over an area of ~3*10**6 km**2, the majority have strikingly uniform incompatible element patterns (La/Yb=0.96+/-0.16, n=64 out of 79 samples, 2sigma) and initial Nd-Pb isotopic compositions (e.g. 143Nd/144Ndin=0.51291+/-3, epsilon-Nd i=7.3+/-0.6, 206Pb/204Pbin=18.86+/-0.12, n=54 out of 66, 2sigma). Lavas with endmember compositions have only been sampled at the DSDP Sites, Gorgona Island (Colombia) and the 65-60 Ma accreted Quepos and Osa igneous complexes (Costa Rica) of the subsequent hotspot track. Despite the relatively uniform composition of most lavas, linear correlations exist between isotope ratios and between isotope and highly incompatible trace element ratios. The Sr-Nd-Pb isotope and trace element signatures of the chemically enriched lavas are compatible with derivation from recycled oceanic crust, while the depleted lavas are derived from a highly residual source. This source could represent either oceanic lithospheric mantle left after ocean crust formation or gabbros with interlayered ultramafic cumulates of the lower oceanic crust. High 3He/4He in olivines of enriched picrites at Quepos are ~12 times higher than the atmospheric ratio suggesting that the enriched component may have once resided in the lower mantle. Evaluation of the Sm-Nd and U-Pb isotope systematics on isochron diagrams suggests that the age of separation of enriched and depleted components from the depleted MORB source mantle could have been <=500 Ma before CLIP formation and interpreted to reflect the recycling time of the CLIP source. Mantle plume heads may provide a mechanism for transporting large volumes of possibly young recycled oceanic lithosphere residing in the lower mantle back into the shallow MORB source mantle.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Topography is often thought as exclusively linked to mountain ranges formed by plates collision. It is now, however, known that apart from compression, uplift and denudation of rocks may be triggered by rifting, like it happens at elevated passive margins, and away from plate boundaries by both intra-plate stress causing reactivation of older structures, and by epeirogenic movements driven by mantle dynamics and initiating long-wavelength uplift. In the Cenozoic, central west Britain and other parts of the North Atlantic margins experienced multiple episodes of rock uplift and denudation that have been variable both at spatial and temporal scales. The origin of topography in central west Britain is enigmatic, and because of its location, it may be related to any of the processes mentioned above. In this study, three low temperature thermochronometers, the apatite fission track (AFT) and apatite and zircon (U-Th-Sm)/He (AHe and ZHe, respectively) methods were used to establish the rock cooling history from 200◦C to 30◦C. The samples were collected from the intrusive rocks in the high elevation, high relief regions of the Lake District (NW England), southern Scotland and northern Wales. AFT ages from the region are youngest (55–70 Ma) in the Lake District and increase northwards into southern Scotland and southwards in north Wales (>200 Ma). AHe and ZHe ages show no systematic pattern; the former range from 50 to 80 Ma and the latter tend to record the post-emplacement cooling of the intrusions (200–400 Ma). The complex, multi-thermochronometric inverse modelling suggests a ubiquitous, rapid Late Cretaceous/early Palaeogene cooling event that is particularly marked in Lake District and Criffell. The timing and rate of cooling in southern Scotland and in northern Wales is poorly resolved as the amount of cooling was less than 60◦C. The Lake District plutons were at >110◦C prior to the early Palaeogene; cooling due to a combined effect of high heat flow, from the heat producing granite batholith, and the blanketing effect of the overlying low conductivity Late Mesozoic limestones and mudstones. Modelling of the heat transfer suggests that this combination produced an elevated geothermal gradient within the sedimentary rocks (50–70◦C/km) that was about two times higher than at the present day. Inverse modelling of the AFT and AHe data taking the crustal structure into consideration suggests that denudation was the highest, 2.0–2.5 km, in the coastal areas of the Lake District and southern Scotland, gradually decreasing to less than 1 km in the northern Southern Uplands and northern Wales. Both the rift-related uplift and the intra-plate compression poorly correlate with the timing, location and spatial distribution of the early Palaeogene denudation. The pattern of early Palaeogene denudation correlates with the thickness of magmatic underplating, if the changes of mean topography, Late Cretaceous water depth and eroded rock density are taken into consideration. However, the uplift due to underplating alone cannot fully justify the total early Palaeogene denudation. The amount that is not ex- plained by underplating is, however, roughly spatially constant across the study area and can be referred to the transient thermal uplift induced by the mantle plume arrival. No other mechanisms are required to explain the observed pattern of denudation. The onset of denudation across the region is not uniform. Denudation started at 70–75 Ma in the central part of the Lake District whereas the coastal areas the rapid erosion appears to have initiated later (65–60 Ma). This is ~10 Ma earlier than the first vol- canic manifestation of the proto-Iceland plume and favours the hypothesis of the short period of plume incubation below the lithosphere before the volcanism. In most of the localities, the rocks had cooled to temperatures lower than 30◦C by the end of the Palaeogene, suggesting that the total Neogene denudation was, at a maximum, several hundreds of metres. Rapid cooling in the last 3 million years is resolved in some places in southern Scotland, where it could be explained by glacial erosion and post-glacial isostatic uplift.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the crust, upper mantle and mantle transition zone of the Cape Verde hotspot by using seismic P and S receiver functions from several tens of local seismograph stations. We find a strong discontinuity at a depth of similar to 10 km underlain by a similar to 15-km thick layer with a high (similar to 1.9) Vp/Vs velocity ratio. We interpret this discontinuity and the underlying layer as the fossil Moho, inherited from the pre-hotspot era, and the plume-related magmatic underplate. Our uppermost-mantle models are very different from those previously obtained for this region: our S velocity is much lower and there are no indications of low densities. Contrary to previously published arguments for the standard transition zone thickness our data indicate that this thickness under the Cape Verde islands is up to similar to 30 km less than in the ambient mantle. This reduction is a combined effect of a depression of the 410-km discontinuity and an uplift of the 660-km discontinuity. The uplift is in contrast to laboratory data and some seismic data on a negligible dependence of depth of the 660-km discontinuity on temperature in hotspots. A large negative pressure-temperature slope which is suggested by our data implies that the 660-km discontinuity may resist passage of the plume. Our data reveal beneath the islands a reduction of S velocity of a few percent between 470-km and 510-km depths. The low velocity layer in the upper transition zone under the Cape Verde archipelago is very similar to that previously found under the Azores and a few other hotspots. In the literature there are reports on a regional 520-km discontinuity, the impedance of which is too large to be explained by the known phase transitions. Our observations suggest that the 520-km discontinuity may present the base of the low-velocity layer in the transition zone. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work addresses the present-day (<100 ka) mantle heterogeneity in the Azores region through the study of two active volcanic systems from Terceira Island. Our study shows that mantle heterogeneities are detectable even when "coeval" volcanic systems (Santa Barbara and Fissural) erupted less than 10 km away. These volcanic systems, respectively, reflect the influence of the Terceira and D. Joao de Castro Bank end-members defined by Beier et at (2008) for the Terceira Rift Santa Barbara magmas are interpreted to be the result of mixing between a HIMU-type component, carried to the upper mantle by the Azores plume, and the regional depleted MORB magmas/source. Fissural lavas are characterized by higher Ba/Nb and Nb/U ratios and less radiogenic Pb-206/Pb-204, Nd-143/Nd-144 and Hf-176/Hf-177, requiring the small contribution of delaminated sub-continental lithospheric mantle residing in the upper mantle. Published noble gas data on lavas from both volcanic systems also indicate the presence of a relatively undegassed component, which is interpreted as inherited from a lower mantle reservoir sampled by the ascending Azores plume. As inferred from trace and major elements, melting began in the garnet stability field, while magma extraction occurred within the spinel zone. The intra-volcanic system's chemical heterogeneity is mainly explained by variable proportions of the above-mentioned local end-members and by crystal fractionation processes. (C) 2011 Elsevier By. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The oceanic crust fragments exposed in central America, in north-western South America, and in the Caribbean islands have been considered to represent accreted remnants of the Caribbean-Colombian Oceanic Plateau (CCOP). On the basis of trace element and Nd, Sr, and Pb isotopic compositions we infer that cumulate rocks, basalts, and diabases from coastal Ecuador have a different source than the basalts from the Dominican Republic. The latter suite includes the 86 Ma basalts of the Duarte Complex which are light rare earth element (REE) -enriched and display (relative to normal mid-ocean ridge basalts, NMORB) moderate enrichments in large ion lithophile elements, together with high Nb, Ta, Pb, and low Th contents. Moreover, they exhibit a rather restricted range of Nd and Pb isotopic ratios consistent with their derivation from an ocean island-type mantle source, the composition of which includes the HIMU (high U-238/Pb-204) component characteristic of the Galapagos hotspot. In contrast, the 123 Ma Ecuadorian oceanic rocks have flat REE patterns and (relative to NMORB) are depleted in Zr, Hf, Th, and U. Moreover, they show a wide range of Nd and Pb isotopic ratios intermediate between those of ocean island basalts and NMORB. It is unlikely, on geochemical grounds, that the plume source of the Ecuadorian fragments was similar to that of the Galapagos. In addition, because of the NNE motion of the Farallon plate during the Early Cretaceous, the Ecuadorian oceanic plateau fragments could not have been derived from the Galapagos hotspot but were likely formed at a ridge-centered or near-ridge hotspot somewhere in the SE Pacific.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present models for the upper-mantle velocity structure beneath SE and Central Brazil using independent tomographic inversions of P- and S-wave relative arrival-time residuals (including core phases) from teleseismic earthquakes. The events were recorded by a total of 92 stations deployed through different projects, institutions and time periods during the years 1992-2004. Our results show correlations with the main tectonic structures and reveal new anomalies not yet observed in previous works. All interpretations are based on robust anomalies, which appear in the different inversions for P-and S-waves. The resolution is variable through our study volume and has been analyzed through different theoretical test inversions. High-velocity anomalies are observed in the western portion of the Sao Francisco Craton, supporting the hypothesis that this Craton was part of a major Neoproterozoic plate (San Franciscan Plate). Low-velocity anomalies beneath the Tocantins Province (mainly fold belts between the Amazon and Sao Francisco Cratons) are interpreted as due to lithospheric thinning, which is consistent with the good correlation between intraplate seismicity and low-velocity anomalies in this region. Our results show that the basement of the Parana Basin is formed by several blocks, separated by suture zones, according to model of Milani & Ramos. The slab of the Nazca Plate can be observed as a high-velocity anomaly beneath the Parana Basin, between the depths of 700 and 1200 km. Further, we confirm the low-velocity anomaly in the NE area of the Parana Basin which has been interpreted by VanDecar et al. as a fossil conduct of the Tristan da Cunha Plume related to the Parana flood basalt eruptions during the opening of the South Atlantic.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The bimodal NW Etendeka province is located at the continental end of the Tristan plume trace in coastal Namibia. It comprises a high-Ti (Khumib type) and three low-Ti basalt (Tafelberg, Kuidas and Esmeralda types) suites, with, at stratigraphically higher level, interstratified high-Ti latites (three units) and quartz latites (five units), and one low-Ti quartz latite. Khumib basalts are enriched in high field strength elements and light rare earth elements relative to low-Ti types and exhibit trace element affinities with Tristan da Cunha lavas. The unradiogenic Pb-206/Pb-204 ratios of Khumib basalts are distinctive, most plotting to the left of the 132 Ma Geochron, together with elevated Pb-207/Pb-204 ratios, and Sr-Nd isotopic compositions plotting in the lower Nd-143/Nd-144 part of mantle array (EM1-like). The low-Ti basalts have less coherent trace element patterns and variable, radiogenic initial Sr (similar to0.707-0.717) and Pb isotope compositions, implying crustal contamination. Four samples, however, have less radiogenic Pb and Sr that we suggest approximate their uncontaminated source. All basalt types, but particularly the low-Ti types, contain samples with trace element characteristics (e.g. Nb/Nb-*) suggesting metasediment input, considered source-related. Radiogenic isotope compositions of these samples require long-term isolation of the source in the mantle and depletions (relative to unmodified sediment) in certain elements (e.g. Cs, Pb, U), which are possibly subduction-related. A geodynamic model is proposed in which the emerging Tristan plume entrained subducted material in the Transition Zone region, and further entrained asthenosphere during plume head expansion. Mixing calculations suggest that the main features of the Etendeka basalt types can be explained without sub-continental lithospheric mantle input. Crustal contamination is evident in most low-Ti basalts, but is distinct from the incorporation of a metasedimentary source component at mantle depths.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simplified model for anisotropic mantle convection based on a novel class of rheologies, originally developed for folding instabilities in multilayered rock (MUHLHAUS et al., 2002), is extended ¨ through the introduction of a thermal anisotropy dependent on the local layering. To examine the effect of the thermal anisotropy on the evolution of mantle material, a parallel implementation of this model was undertaken using the Escript modelling toolkit and the Finley finite-element computational kernel (DAVIES et al., 2004). For the cases studied, there appears too little if any effect. For comparative purposes, the effects of anisotropic shear viscosity and the introduced thermal anisotropy are also presented. These results contribute to the characterization of viscous anisotropic mantle convection subject to variation in thermal conductivities and shear viscosities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The earth's tectonic plates are strong, viscoelastic shells which make up the outermost part of a thermally convecting, predominantly viscous layer. Brittle failure of the lithosphere occurs when stresses are high. In order to build a realistic simulation of the planet's evolution, the complete viscoelastic/brittle convection system needs to be considered. A particle-in-cell finite element method is demonstrated which can simulate very large deformation viscoelasticity with a strain-dependent yield stress. This is applied to a plate-deformation problem. Numerical accuracy is demonstrated relative to analytic benchmarks, and the characteristics of the method are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[1] The physical conditions required to provide for the tectonic stability of cratonic crust and for the relative longevity of deep cratonic lithosphere within a dynamic, convecting mantle are explored through a suite of numerical simulations. The simulations allow chemically distinct continents to reside within the upper thermal boundary layer of a thermally convecting mantle layer. A rheologic formulation, which models both brittle and ductile behavior, is incorporated to allow for plate-like behavior and the associated subduction of oceanic lithosphere. Several mechanisms that may stabilize cratons are considered. The two most often invoked mechanisms, chemical buoyancy and/or high viscosity of cratonic root material, are found to be relatively ineffective if cratons come into contact with subduction zones. High root viscosity can provide for stability and longevity but only within a thick root limit in which the thickness of chemically distinct, high-viscosity cratonic lithosphere exceeds the thickness of old oceanic lithosphere by at least a factor of 2. This end-member implies a very thick mechanical lithosphere for cratons. A high brittle yield stress for cratonic lithosphere as a whole, relative to oceanic lithosphere, is found to be an effective and robust means for providing stability and lithospheric longevity. This mode does not require exceedingly deep strength within cratons. A high yield stress for only the crustal or mantle component of the cratonic lithosphere is found to be less effective as detachment zones can then form at the crust-mantle interface which decreases the longevity potential of cratonic roots. The degree of yield stress variations between cratonic and oceanic lithosphere required for stability and longevity can be decreased if cratons are bordered by continental lithosphere that has a relatively low yield stress, i.e., mobile belts. Simulations that combine all the mechanisms can lead to crustal stability and deep root longevity for model cratons over several mantle overturn times, but the dominant stabilizing factor remains a relatively high brittle yield stress for cratonic lithosphere.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper presents a theory for modeling flow in anisotropic, viscous rock. This theory has originally been developed for the simulation of large deformation processes including the folding and kinking of multi-layered visco-elastic rock (Muhlhaus et al. [1,2]). The orientation of slip planes in the context of crystallographic slip is determined by the normal vector - the director - of these surfaces. The model is applied to simulate anisotropic mantle convection. We compare the evolution of flow patterns, Nusselt number and director orientations for isotropic and anisotropic rheologies. In the simulations we utilize two different finite element methodologies: The Lagrangian Integration Point Method Moresi et al [8] and an Eulerian formulation, which we implemented into the finite element based pde solver Fastflo (www.cmis.csiro.au/Fastflo/). The reason for utilizing two different finite element codes was firstly to study the influence of an anisotropic power law rheology which currently is not implemented into the Lagrangian Integration point scheme [8] and secondly to study the numerical performance of Eulerian (Fastflo)- and Lagrangian integration schemes [8]. It turned out that whereas in the Lagrangian method the Nusselt number vs time plot reached only a quasi steady state where the Nusselt number oscillates around a steady state value the Eulerian scheme reaches exact steady states and produces a high degree of alignment (director orientation locally orthogonal to velocity vector almost everywhere in the computational domain). In the simulations emergent anisotropy was strongest in terms of modulus contrast in the up and down-welling plumes. Mechanisms for anisotropic material behavior in the mantle dynamics context are discussed by Christensen [3]. The dominant mineral phases in the mantle generally do not exhibit strong elastic anisotropy but they still may be oriented by the convective flow. Thus viscous anisotropy (the main focus of this paper) may or may not correlate with elastic or seismic anisotropy.