950 resultados para Manganese Oxides
Resumo:
Sedimentary rocks of Barremian through early Maestrichtian age recovered on Deep Sea Drilling Project Leg 61 had their principal source in the complex of igneous rocks with which they are interlayered in the Nauru Basin. Relict textures and primary sedimentary structures show these Cretaceous sediments to be of hyaloclastic origin, in part reworked and redeposited by slumps and currents. The dominant composition now is smectite, but locally iron, titanium, and manganese oxides, plagioclase, pyroxene, analcime, clinoptilolite, chalcedonic quartz, cristobalite, amphibole, nontronite, celadonite, and pyrite are also present. The mineral assemblages and the geochemistry reflect the original basaltic composition and its subsequent alteration by one or more processes of submarine weathering, authigenesis, hydrothermal circulation, and contact metamorphism. Hyaloclastitic sandstone, siltstone, and breccia within the sheet flows below 729 meters sub-bottom depth have Barremian fossils, thus establishing the age of the lower, or extrusive, complex of post-ridge-crest volcanism. Similar hyaloclastites between 564 and 729 meters are invaded by hypabyssal sills of the upper igneous complex, and fossil ages of Albian or Cenomanian set an older limit to the age of that second post-ridge-crest episode. Cenomanian to early Campanian sedimentary rocks between 490 and 564 meters have a substantial contribution of clays of submarine-weathered-basalt origin, as well as hydrothermal and pelagic components. The interval of reworked hyaloclastitic siltstone, sandstone, and breccias between 450 and 490 meters is of late Campanian and early Maestrichtian age. These sediments probably formed from glassy basalt that fragmented upon eruption nearby, when sills were being emplaced. In addition to pelagic elements, these Upper Cretaceous volcanogenic sediments include redeposited material of shallow-water origin, apparently derived from the Marshall Islands.
Resumo:
Sediments were collected with Eckman and Petersen dredges from the bottom of Trout Lake, northern Wisconsin, at 221 stations. Sampling was done with a spud sampler at 32 stations, and core samples were obtained with a Jenkins and Mortimer and a Twenhofel sampler at 17 stations. The shore and offshore deposits of the shores of Trout Lake and the shores of the islands are described. Megascopic descriptions are given of the samples collected with the Eckman and Petersen dredges. Sediments on bottoms of about 10 meters or deeper are mainly gyttja, or crusts composed of mixtures of organic matter, ferric hydroxide, and some form of manganese oxide. The latter deposits are extensive. Detailed descriptions of some of the samples of sands are given, and generalizations respecting size and distribution are made. Tables showing quartiles, medians, and coefficients of sorting and skewness of the coarse sediments collected from the bottom are given in tables. Mechanical analyses of all fine sediments, mainly gyttja, were not made, as previous experience seems to have demonstrated that results have no sedimentational value. Organic matter of the gyttja was determined and also the percentages of lignin in the organic matter. Core samples are composed almost entirely of fine materials, mainly gyttja, and determinations were made on these samples in the same way as on the samples obtained with the Eckman and Petersen dredges. Studies of the core samples show that the fine sediments usually contain in excess of 90 per cent moisture and there is very little change in the moisture content from top to bottom of cores. A map shows the distribution of the iron and manganese deposits. These deposits were found to contain 10 to 20 per cent of organic matter, 11 to 16 per cent of metallic iron, and 12 to 30 per cent of metallic manganese. No stratification of any kind was found in any of the deep-water sediments of Trout Lake except in the iron and manganese crusts. Absence of stratification is considered to be due to the slow rate of deposition and the mixing of sediments by organisms which dwell in them. The data indicate that the rate of deposition in the deep waters of Trout Lake is of the order of 1 foot in 15,000 years.
Resumo:
Boundary scavenging, or the enhanced removal of adsorption-prone elements from the ocean in areas of high particle flux, is an often cited, though not well-quantified, concept used to understand the oceanic distribution of many trace metals. Because 230Th and 231Pa are produced uniformly from uranium decay and removed differentially by scavenging, the process of boundary scavenging can be elucidated by a more detailed knowledge of their water column distributions. To this end, filtered seawater was collected across the gradients in particle flux which span the subarctic Pacific: in the west during the Innovative North Pacific Experiment (INOPEX) and in the east along Line P. Lateral concentration gradients of dissolved 230Th are small throughout the subarctic Pacific at 12 sites of variable particle flux. This contradicts the prediction of the traditional boundary scavenging model. A compilation of water column data from throughout the North Pacific reveals much larger lateral concentration gradients for 230Th between the subarctic North Pacific and subtropical gyre, over lateral gradients in scavenging intensity similar to those found within the subarctic. This reflects a biogeochemical-province aspect to scavenging. Upper water column distributions of 231Pa and 231Pa/230Th ratio are consistent with the influence of scavenging by biogenic opal, while deep waters (>2.5 km) reveal an additional 231Pa sink possibly related to manganese oxides produced at continental margins or ridge crests.
Resumo:
Use of the hydraulic piston corer during DSDP Leg 70 in the Galapagos mounds area allowed recovery of an undisturbed sedimentary sequence down to the basement. It thus became possible to establish the chronology of different events. Several holes on and off the mounds were studied, using uranium series disequilibrium methods of age determination and oxygen isotope stratigraphy. The following sequence was thereby established: 1) From 600,000 to 300,000 years ago there was normal pelagic sedimentation, with an injection of uranium-rich solution, probably of hydrothermal origin, between 400,000 and 300,000 years ago. 2) From 300,000 to 90,000 years ago, nontronitic clay formed, replacing a pre-existing sediment. 3) From 60,000 to 20,000 years ago, manganese oxide deposits formed, probably also replacing pre-existing sediments. 4) About 19,000 years ago there occurred a uranium injection from seawater, attributed to the end of the hydrothermal circulation. In some holes, especially Hole 424, Leg 54, younger manganese oxides have been found, indicating that some mounds may be presently active.
Resumo:
This report presents the results of a study of the stable isotopic and chemical composition of secondary carbonate minerals precipitated within basalts at Ocean Drilling Program Sites 707 and 715. At Site 715, the secondary carbonates are all composed of calcite and display a narrow range of carbon and oxygen stable isotope ratios, with values ranging from -2.75 per mil to 1.95 per mil PDB and -0.27 per mil to 2.86 per mil PDB, respectively. Strontium, iron, and manganese values of the samples are generally low. The geochemistry of Site 715 samples indicates that they precipitated from seawater-domi- nated fluids, at low temperatures, as is typical of secondary carbonates from most Deep Sea Drilling Project sites. In contrast, at Site 707, aragonite, siderite, and manganese-rich calcite occur as secondary carbonates in addition to calcite. The carbon isotopes of the Site 707 carbonates of all rock types are depleted in 13C. Values range from -2.79 per mil to -16.43 per mil PDB. Oxygen isotope values do not show a wide variation, ranging from -1.78 per mil to 1.17 per mil. The strontium contents of the samples range from 5200 to 8100 ppm for aragonites, and from 145 to 862 ppm for calcites. Iron and manganese contents are high in calcites and siderites and low in aragonites. Site 707 carbonates precipitated at low temperatures in a fairly closed system, in which basalt-seawater interaction has greatly influenced the chemistry of the pore fluids. The reactions occurring within the system before and in conjunction with secondary carbonate precipita- tion include oxidation of isotopically light methane, derived from fluids circulating within the basalts, and reduction of substantial amounts of iron and manganese oxides from the basalts.
Resumo:
Whole-core (WC) measurements of low-field magnetic susceptibility (MS) provide an extremely simple, rapid, and nondestructive technique for high-resolution core logging and lithostratigraphic correlation between subsidiary holes at Ocean Drilling Program (ODP) sites. This is particularly useful for reconstructing composite, stratigraphically continuous sequences for individual ODP sites by splicing the uninterrupted records obtained from subsections of offset cores recovered from adjacent holes. Correlation between the WCMS profiles of holes drilled at different sites is also possible in some instances, especially when lithologic variations at each site are controlled by regional paleoceanographic or global (i.e., orbitally forced) paleoclimatic changes. In such circumstances, WCMS may also be used as a proxy paleoclimatic indicator, duly assisting climatostratigraphic zonation of the recovered sequence by more conventional microfossil and isotopic techniques. High-resolution WCMS profiles are also useful in detecting intervals of the recovered sequence affected by drilling disturbance, in the form of contamination by pipe rust or similar metallic artifacts as well as discontinuities related to repenetration of the corer or loss of material between successively cored intervals. Stratigraphic intervals that have been affected by early (suboxic) diagenesis resulting from a high initial organic matter content of the sediment are also readily identified by WCMS logging. The MS signal of horizons affected by suboxic diagensis is typically degraded in proportion to the duration and intensity (related to initial Corg concentration) of organic matter remineralization. The lowering of MS values during suboxic diagenesis results from "dissolution" (bacterially mediated ionic dissociation) of magnetic iron and manganese oxides and oxyhydroxides in the sediment. It is to be hoped that, on future ODP (or similar) cruises, WCMS logging will cease to be regarded as a mere adjunct to paleomagnetic measurements, but rather as a simple, yet powerful, lithostratigraphic tool, directly analogous to downhole geophysical logging tools, and complimentary to shipboard techniques for whole-core measurements of physical properties (e.g., P-wave logging, GRAPE, etc.).
Resumo:
In the South Atlantic, at Sites 519 to 523, the dissolution of calcareous oozes ended in the formation of red clays rich in iron and manganese. The early authigenesis of manganese oxides and clays is described in Miocene marly calcareous oozes. The mineralogical and geochemical influences of basaltic basement weathering are shown by the occurrence of palagonite, authigenic clays, and oxides in the basal sediments. The development of red clay facies can be inhibited by local topographic and paleoceanographic changes, as at Site 520.
Resumo:
Studies by optical microscopy, x-ray diffraction, and electron probe techniques of ferromanganese concretions from three Canadian lakes reveal chemical banding of amorphous hydrated iron and manganese oxides. The average ratio of iron to manganese in concretions from these lakes varies from 0.43 to 2.56. The concentrations of cobalt, nickel, copper, and lead are one to two orders of magnitude below those reported for oceanic ferromanganese concretions.