312 resultados para Malus domestica Borkh


Relevância:

80.00% 80.00%

Publicador:

Resumo:

En este trabajo se evalúa el efecto de la intensidad y época de raleo manual sobre el rendimiento y el tamaño de frutos en manzano (Malus domestica Bork cv. Gala). Árboles con cargas similares fueron raleados manualmente dejando 4,6 y 2,56 frutos/cm2 área de sección transversal de tronco (ASTT) a los 32 días después de plena flor (DDPF) y con 3,87 y 2,39 frutos/cm2 ASTT a los 39 DDPF. El mejor rendimiento/planta se obtuvo con la mayor proporción de calibres pequeños en el tratamiento con mayor carga. La época de raleo no afectó el rendimiento ni el peso promedio de fruto. El menor tamaño de frutos se obtuvo con el testigo sin ralear. El peso promedio de fruto aumentó significativamente cuando se redujo la carga a 2,36 frutos/cm2 ASTT sin diferencia entre épocas.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An allele of the 1-aminocyclopropane-1-carboxylic acid (ACC) synthase gene (Md-ACS1), the transcript and translated product of which have been identified in ripening apples (Malus domestica), was isolated from a genomic library of the apple cultivar, Golden Delicious. The predicted coding region of this allele (ACS1-2) showed that seven nucleotide substitutions in the corresponding region of ACS1-1 resulted in just one amino acid transition. A 162-bp sequence characterized as a short interspersed repetitive element retrotransposon was inserted in the 5′-flanking region of ACS1-2 corresponding to position −781 in ACS1-1. The XhoI site located near the 3′ end of the predicted coding region of ACS1-2 was absent from the reverse transcriptase-polymerase chain reaction product, revealing that exclusive transcription from ACS1-1 occurs during ripening of cv Golden Delicious fruit. DNA gel-blot and polymerase chain reaction analyses of genomic DNAs showed clearly that apple cultivars were either heterozygous for ACS1-1 and ACS1-2 or homozygous for each type. RNA gel-blot analysis of the ACS1-2 homozygous Fuji apple, which produces little ethylene and has a long storage life, demonstrated that the level of transcription from ACS1-2 during the ripening stage was very low.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An extracellular form of the calcium-dependent protein-cross-linking enzyme TGase (transglutaminase) was demonstrated to be involved in the apical growth of Malus domestica pollen tube. Apple pollen TGase and its substrates were co-localized within aggregates on the pollen tube surface, as determined by indirect immunofluorescence staining and the in situ cross-linking of fluorescently labelled substrates. TGase-specific inhibitors and an anti-TGase monoclonal antibody blocked pollen tube growth, whereas incorporation of a recombinant fluorescent mammalian TGase substrate (histidine-tagged green fluorescent protein: His6-Xpr-GFP) into the growing tube wall enhanced tube length and germination, consistent with a role of TGase as a modulator of cell wall building and strengthening. The secreted pollen TGase catalysed the cross-linking of both PAs (polyamines) into proteins (released by the pollen tube) and His6-Xpr-GFP into endogenous or exogenously added substrates. A similar distribution of TGase activity was observed in planta on pollen tubes germinating inside the style, consistent with a possible additional role for TGase in the interaction between the pollen tube and the style during fertilization.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The southern region of Brazil, especially the states of Parana and Santa Catarina stand out for growing grapes and apples for fresh consumption and in order to add value to these products, process the material for the production of wine, juices and jellies . As a result large quantities of by-products, such as peels, seeds and pulp are produced becoming environmental problems. Studies reuse of these by-products have attracted interest because they have shown a high biological potential, due to the presence of high levels of phenolic compounds, which are associated with a lower incidence of disease caused by oxidative stress, due to its antioxidant, antiinflammatory and antibacterial properties. Currently, few studies are presented on the phenolic composition and biological potential of waste grape variety Bordô (Vitis labrusca) and apple (Malus domestica) Gala variety, cultivated in southern Brazil. Within this context, the objectives of this study were: compare the efficiency of solidliquid and liquid-liquid extraction, perform the optimization and validation of analytical methodology by HPLC-DAD for the separation, identification and quantification of multiclass phenolic compounds, evaluate the activity antioxidant by sequestering methods of free radical 2,2-diphenyl-1 picrilhidrazina (DPPH) and 2,2-azino-bis (3- ethyl-benzthiazoline-6-sulphonic acid) (ABTS) solution, reduction of Fe3+ in Fe2+ method (FRAP), ORAC, RP-HPLC-ABTS online, Rancimat and determination of total phenolics three agro-industrial byproducts, pomace and stems grape Bordô produced in Paraná Southwest region and Gala apple pomace coming from the Santa Catarina West. Optimization and validation of chromatographic method showed satisfactory quality parameters for the compounds of interest and the solidliquid extraction was more efficient in extracting phenolic evaluated. The three byproducts evaluated showed significant levels of phenolic compounds when analyzed by HPLC, especially flavonoids, catechin and epicatechin besides that showed significant antioxidant capacity. The grape stems extract had the highest sequestration capacity of DPPH and ABTS radical and reduced iron, and high content of phenolic compounds. The apple pomace extract showed the best response to the Rancimat method, which indicates a high potential to protect the oil from lipid oxidation, was no significant difference when compared to synthetic antioxidant TBHQ. The results of this study showed that the agro-industrial coproducts analyzed are rich in phenolic compounds of high antioxidant capacity and therefore must be better explored by the food and pharmaceutical industries.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The fertilizing management for apple tree is essential, especially for nitrogen, one of the most important nutrients affecting fruit yield. Thus, an experiment was conducted in 2012 and 2013 to evaluate the fruit production, yield and leaf chlorophyll of ?Princesa? and ?Eva? apples as a function of nitrogen fertigation under Brazilian semiarid conditions. The experimental design consisted of randomised blocks, with treatments distributed in a factorial arrangement 2 x 4, corresponding to apple cultivars (Eva and Princesa); and nitrogen doses (160, 120, 80 and 40 kg of N ha-1), with four replications and three plants. Calcium nitrate was used as nitrogen source (15.5% of N) with applications twice a week during 40 days, reaching 12 fertilizing performances through irrigation water. The following variables were evaluated: i) fruit production per plant (kg plant-1); ii) fruit yield (t ha-1); iii) number of fruits per plant; iv) leaf chlorophyll meter readings (index); and v) leaf nitrogen concentration (g kg-1). Princesa apple cultivar if compared to ?Eva? presents a better fruit production performance under Brazilian semiarid. Furthermore, nitrogen doses fertilized through irrigation water have no effect on fruit production of Eva and Princesa apple cultivars during the first production cycle.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conhecer os estádios fenológicos de uma cultura permite modificar práticas de manejo e programá-las com o objetivo de melhorar a produção, principalmente quando o cultivo é realizado em regiões diferentes das tradicionalmente produtoras. Assim o presente trabalho teve o objetivo de caracterizar os estágios fenológicos da cultivar de macieira Daiane e verificar a frutificação efetiva em condições semiáridas, em Petrolina, PE, no ano de 2009. Para efetuar as avaliações foram marcados quatro ramos de cinco plantas ao acaso, nas quais foram acompanhados os estádios fenológicos e determinado o índice de pegamento. O ciclo fenológico da macieira (Malus domestica) Daiane em condição semiárida tropical é de 138 dias com índice de pegamento de 6,67%. É possível produzir macieira Daiane em condição semiárida tropical.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Apple consumption is highly recomended for a healthy diet and is the most important fruit produced in temperate climate regions. Unfortunately, it is also one of the fruit that most ofthen provoks allergy in atopic patients and the only treatment available up to date for these apple allergic patients is the avoidance. Apple allergy is due to the presence of four major classes of allergens: Mal d 1 (PR-10/Bet v 1-like proteins), Mal d 2 (Thaumatine-like proteins), Mal d 3 (Lipid transfer protein) and Mal d 4 (profilin). In this work new advances in the characterization of apple allergen gene families have been reached using a multidisciplinary approach. First of all, a genomic approach was used for the characterization of the allergen gene families of Mal d 1 (task of Chapter 1), Mal d 2 and Mal d 4 (task of Chapter 5). In particular, in Chapter 1 the study of two large contiguos blocks of DNA sequences containing the Mal d 1 gene cluster on LG16 allowed to acquire many new findings on number and orientation of genes in the cluster, their physical distances, their regulatory sequences and the presence of other genes or pseudogenes in this genomic region. Three new members were discovered co-localizing with the other Mal d 1 genes of LG16 suggesting that the complexity of the genetic base of allergenicity will increase with new advances. Many retrotranspon elements were also retrieved in this cluster. Due to the developement of molecular markers on the two sequences, the anchoring of the physical and the genetic map of the region has been successfully achieved. Moreover, in Chapter 5 the existence of other loci for the Thaumatine-like protein family in apple (Mal d 2.03 on LG4 and Mal d 2.02 on LG17) respect the one reported up to now was demonstred for the first time. Also one new locus for profilins (Mal d 4.04) was mapped on LG2, close to the Mal d 4.02 locus, suggesting a cluster organization for this gene family, as is well reported for Mal d 1 family. Secondly, a methodological approach was used to set up an highly specific tool to discriminate and quantify the expression of each Mal d 1 allergen gene (task of Chapter 2). In aprticular, a set of 20 Mal d 1 gene specific primer pairs for the quantitative Real time PCR technique was validated and optimized. As a first application, this tool was used on leaves and fruit tissues of the cultivar Florina in order to identify the Mal d 1 allergen genes that are expressed in different tissues. The differential expression retrieved in this study revealed a tissue-specificity for some Mal d 1 genes: 10/20 Mal d 1 genes were expressed in fruits and, indeed, probably more involved in the allergic reactions; while 17/20 Mal d 1 genes were expressed in leaves challenged with the fungus Venturia inaequalis and therefore probably interesting in the study of the plant defense mechanism. In Chapter 3 the specific expression levels of the 10 Mal d 1 isoallergen genes, found to be expressed in fruits, were studied for the first time in skin and flesh of apples of different genotypes. A complex gene expression profile was obtained due to the high gene-, tissue- and genotype-variability. Despite this, Mal d 1.06A and Mal d 1.07 expression patterns resulted particularly associated with the degree of allergenicity of the different cultivars. They were not the most expressed Mal d 1 genes in apple but here it was hypotized a relevant importance in the determination of allergenicity for both qualitative and quantitative aspects of the Mal d 1 gene expression levels. In Chapter 4 a clear modulation for all the 17 PR-10 genes tested in young leaves of Florina after challenging with the fungus V. inaequalis have been reported but with a peculiar expression profile for each gene. Interestingly, all the Mal d 1 genes resulted up-regulated except Mal d 1.10 that was down-regulated after the challenging with the fungus. The differences in direction, timing and magnitude of induction seem to confirm the hypothesis of a subfunctionalization inside the gene family despite an high sequencce and structure similarity. Moreover, a modulation of PR-10 genes was showed both in compatible (Gala-V. inaequalis) and incompatible (Florina-V. inaequalis) interactions contribute to validate the hypothesis of an indirect role for at least some of these proteins in the induced defense responses. Finally, a certain modulation of PR-10 transcripts retrieved also in leaves treated with water confirm their abilty to respond also to abiotic stress. To conclude, the genomic approach used here allowed to create a comprehensive inventory of all the genes of allergen families, especially in the case of extended gene families like Mal d 1. This knowledge can be considered a basal prerequisite for many further studies. On the other hand, the specific transcriptional approach make it possible to evaluate the Mal d 1 genes behavior on different samples and conditions and therefore, to speculate on their involvement on apple allergenicity process. Considering the double nature of Mal d 1 proteins, as apple allergens and as PR-10 proteins, the gene expression analysis upon the attack of the fungus created the base for unravel the Mal d 1 biological functions. In particular, the knowledge acquired in this work about the PR-10 genes putatively more involved in the specific Malus-V. inaequalis interaction will be helpful, in the future, to drive the apple breeding for hypo-allergenicity genotype without compromise the mechanism of response of the plants to stress conditions. For the future, the survey of the differences in allergenicity among cultivars has to be be thorough including other genotypes and allergic patients in the tests. After this, the allelic diversity analysis with the high and low allergenic cultivars on all the allergen genes, in particular on the ones with transcription levels correlated to allergencity, will provide the genetic background of the low ones. This step from genes to alleles will allow the develop of molecular markers for them that might be used to effectively addressed the apple breeding for hypo-allergenicity. Another important step forward for the study of apple allergens will be the use of a specific proteomic approach since apple allergy is a multifactor-determined disease and only an interdisciplinary and integrated approach can be effective for its prevention and treatment.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Das Kolumnarwachstum beim Apfel (Malus x domestica) geht auf eine in den frühen 1960er Jahren entdeckte Zufallsmutation zurück. Die daraus resultierende Sprossmutante ist von großem wirtschaftlichem Interesse, da diese sehr kompakte Wuchsform unter anderem zu einer enormen Ertragssteigerung durch eine hohe Pflanzdichte der Bäume führt. Das Ziel der Arbeit ist die Entschlüsselung der molekularen Ursache dieser Mutation, die bisher weitgehend ungeklärt ist. Die Analyse wurde durch die Erstellung einer Referenzsequenz der Co-Zielregion einer kolumnaren Apfelsorte sowie durch die Konstruktion eng gekoppelter molekularer Marker realisiert. Durch die Konstruktion von genomischen Apfel-BAC-Bibliotheken mit mehrfacher Genomabdeckung und die Erstellung geeigneter Sonden wurde die Co-Region kloniert und deren Sequenz bestimmt. In Kombination zu dieser klassischen positionellen Klonierungsstrategie wurden genomische Illumina „mate pair“-Bibliotheken erstellt, sequenziert und bioinformatisch analysiert, um die genomische Region vollständig zu annotieren. Somit wurde eine vollständige genomische Referenz der Co-Region einer kolumnaren Apfelsorte erstellt, die die Grundlage für weitere Analysen bildet. Auf Basis dieser Referenz konnte die Co-Mutation in Form der Integration des LTR-Retrotransposons Gypsy-44 im kolumnaren Chromosom an Position 18,79 Mbp auf Chromosom 10 lokalisiert werden. Darüber hinaus konnten Transposon-basierende molekulare Marker erstellt werden, die eine verlässliche Genotypisierung von Apfelbäumen in Bezug auf das Kolumnarwachstum ermöglichen und dies unabhängig von der verwendeten Apfelsorte. Der genaue Wirkmechanismus von Gypsy-44, der zur Ausprägung dieses extremen Phänotyps führt, ist bislang unklar. Zusammenfassend lässt sich sagen, dass die molekulare Ursache für das kolumnare Wachstum aufgeklärt werden konnte und zudem die ersten molekularen Marker erstellt wurden, die eine sortenunabhängige Differenzierung zwischen kolumnaren und nicht kolumnaren Apfelbäumen ermöglichen.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The columnar growth habit of apple is interesting from an economic point of view as the pillar-like trees require little space and labor. Genetic engineering could be used to speed up breeding for columnar trees with high fruit quality and disease resistance. For this purpose, this study dealt with the molecular causes of this interesting phenotype. The original bud sport mutation that led to the columnar growth habit was found to be a novel nested insertion of a Gypsy-44 LTR retrotransposon on chromosome 10 at 18.79 Mb. This subsequently causes tissue-specific differential expression of nearby downstream genes, particularly of a gene encoding a 2OG-Fe(II) oxygenase of unknown function (dmr6-like) that is strongly upregulated in developing aerial tissues of columnar trees. The tissue-specificity of the differential expression suggests involvement of cis-regulatory regions and/or tissue-specific epigenetic markers whose influence on gene expression is altered due to the retrotransposon insertion. This eventually leads to changes in genes associated with stress and defense reactions, cell wall and cell membrane metabolism as well as phytohormone biosynthesis and signaling, which act together to cause the typical phenotype characteristics of columnar trees such as short internodes and the absence of long lateral branches. In future, transformation experiments introducing Gypsy-44 into non-columnar varieties or excising Gypsy-44 from columnar varieties would provide proof for our hypotheses. However, since site-specific transformation of a nested retrotransposon is a (too) ambitious objective, silencing of the Gypsy-44 transcripts or the nearby genes would also provide helpful clues.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Devido à importância do frio hibernal para a fenologia de fruteiras de clima temperado, muitos modelos têm sido propostos para medir a quantidade de frio de modo a usar tais medidas como fator explanatório das fases fenológicas. A quantidade de frio necessária para a superação da dormência varia com a espécie e cultivar. Em macieira, há especial interesse na relação entre elementos agroclimáticos e a quebra de dormência para caracterizar diferentes materiais genéticos e com vistas ao estabelecimento de práticas de manejo cultural. O objetivo deste trabalho foi comparar dois modelos de quantificação do frio acumulado quanto à associação com a data de brotação em macieira.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Anthocyanins are flavonoid pigments imparting red, blue, or purple pigmentation to fruits, flowers and foliage. These compounds are powerful antioxidants in vitro, and are widely believed to contribute to human health. The fruit of the domestic apple (Malus x domestica) is a popular and important source of nutrients, and is considered one of the top ‘functional foods’—those foods that have inherent health-promoting benefits beyond basic nutritional value. The pigmentation of typical red apple fruits results from accumulation of anthocyanin in the skin. However, numerous genotypes of Malus are known that synthesize anthocyanin in additional fruit tissues including the core and cortex (flesh). Red-fleshed apple genotypes are an attractive starting point for development of novel varieties for consumption and nutraceutical use through traditional breeding and biotechnology. However, cultivar development is limited by lack of characterization of the diversity of genetic backgrounds showing this trait. We identified and cataloged red-fleshed apple genotypes from four Malus diversity collections representing over 3,000 accessions including domestic cultivars, wild species, and named hybrids. We found a striking range of flesh color intensity and pattern among accessions, including those carrying the MYB10 R 6 allele conferring ectopic expression of a key transcriptional regulator of anthocyanin biosynthesis. Although MYB10 R 6 was strongly associated with red-fleshed fruit among genotypes, this allele was neither sufficient nor required for this trait in all genotypes. Nearly all red-fleshed accessions tested could be traced back to ‘Niedzwetzkyana’, a presumed natural form of M. sieversii native to central Asia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Apple proliferation (AP) disease is the most important graft-transmissible and vector-borne disease of apple in Europe. ‘Candidatus Phytoplasma mali’ (Ca. P. mali) is the causal agent of AP. Apple (Malus x domestica) and other Malus species are the only known woody hosts. In European apple orchards, the cultivars are mainly grafted on one rootstock, M. x domestica cv. M9. M9 like all other M. x domestica cultivars is susceptible to ‘Ca. P. mali’. Resistance to AP was found in the wild genotype Malus sieboldii (MS) and in MS-derived hybrids but they were characterised by poor agronomic value. The breeding of a new rootstock carrying the resistant and the agronomic traits was the major aim of a project of which this work is a part. The objective was to shed light into the unknown resistance mechanism. The plant-phytoplasma interaction was studied by analysing differences between the ‘Ca. P. mali’-resistant and -susceptible genotypes related to constitutively expressed genes or to induced genes during infection. The cDNA-Amplified Fragment Length Polymorphism (cDNA-AFLP) technique was employed in both approaches. Differences related to constitutively expressed genes were identified between two ‘Ca. P. mali’-resistant hybrid genotypes (4551 and H0909) and the ‘Ca. P. mali’-susceptible M9. 232 cDNA-AFLP bands present in the two resistant genotypes but absent in the susceptible one were isolated but several different products associated to each band were found. Therefore, two different macroarray hybridisation experiments were performed with the cDNA-AFLP fragments yielding 40 sequences encoding for genes of unknown function or a wide array of functions including plant defence. In the second approach, individuation and analysis of the induced genes was carried out exploiting an in vitro system in which healthy and ‘Ca. P. mali’-infected micropropagated plants were maintained under controlled conditions. Infection trials using in vitro grafting of ‘Ca. P. mali’ showed that the resistance phenotype could be reproduced in this system. In addition, ex vitro plants were generated as an independent control of the genes differentially expressed in the in vitro plants. The cDNA-AFLP analysis in in vitro plants yielded 63 bands characterised by over-expression in the infected state of both the H0909 and MS genotypes. The major part (37 %) of the associated sequences showed homology with products of unknown function. The other genes were involved in plant defence, energy transport/oxidative stress response, protein metabolism and cellular growth. Real-time qPCR analysis was employed to validate the differential expression of the genes individuated in the cDNA-AFLP analysis. Since no internal controls were available for the study of the gene expression in Malus, an analysis on housekeeping genes was performed. The most stably expressed genes were the elongation factor-1 α (EF1) and the eukaryotic translation initiation factor 4-A (eIF4A). Twelve out of 20 genes investigated through qPCR were significantly differentially expressed in at least one genotype either in in vitro plants or in ex vitro plants. Overall, about 20% of the genes confirmed their cDNA-AFLP expression pattern in M. sieboldii or H0909. On the contrary, 30 % of the genes showed down-regulation or were not differentially expressed. For the remaining 50 % of the genes a contrasting behaviour was observed. The qPCR data could be interpreted as follows: the phytoplasma infection unbalance photosynthetic activity and photorespiration down-regulating genes involved in photosynthesis and in the electron transfer chain. As result, and in contrast to M. x domestica genotypes, an up-regulation of genes of the general response against pathogens was found in MS. These genes involved the pathway of H2O2 and the production of secondary metabolites leading to the hypothesis that a response based on the accumulation of H2O2 in MS would be at the base of its resistance. This resembles a phenomenon known as “recovery” where the spontaneous remission of the symptoms is observed in old susceptible plants but occurring in a stochastic way while the resistance in MS is an inducible but stable feature. As additional product of this work three cDNA-AFLP-derived markers were developed which showed independent distribution among the seedlings of two breeding progenies and were associated to a genomic region characteristic of MS. These markers will contribute to the development of molecular markers for the resistance as well as to map the resistance on the Malus genome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anthocyanin concentration is an important determinant of the colour of many fruits. In apple (Malus x domestica), centuries of breeding have produced numerous varieties in which levels of anthocyanin pigment vary widely and change in response to environmental and developmental stimuli. The apple fruit cortex is usually colourless, although germplasm does exist where the cortex is highly pigmented due to the accumulation of either anthocyanins or carotenoids. From studies in a diverse array of plant species, it is apparent that anthocyanin biosynthesis is controlled at the level of transcription. Here we report the transcript levels of the anthocyanin biosynthetic genes in a red-fleshed apple compared with a white-fleshed cultivar. We also describe an apple MYB transcription factor, MdMYB10, that is similar in sequence to known anthocyanin regulators in other species. We further show that this transcription factor can induce anthocyanin accumulation in both heterologous and homologous systems, generating pigmented patches in transient assays in tobacco leaves and highly pigmented apple plants following stable transformation with constitutively expressed MdMYB10. Efficient induction of anthocyanin biosynthesis in transient assays by MdMYB10 was dependent on the co-expression of two distinct bHLH proteins from apple, MdbHLH3 and MdbHLH33. The strong correlation between the expression of MdMYB10 and apple anthocyanin levels during fruit development suggests that this transcription factor is responsible for controlling anthocyanin biosynthesis in apple fruit; in the red-fleshed cultivar and in the skin of other varieties, there is an induction of MdMYB10 expression concurrent with colour formation during development. Characterization of MdMYB10 has implications for the development of new varieties through classical breeding or a biotechnological approach.