931 resultados para Magneto-optical imaging techniques


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper is concerned with linear and nonlinear magneto- optical effects in multilayered magnetic systems when treated by the simplest phenomenological model that allows their response to be represented in terms of electric polarization, The problem is addressed by formulating a set of boundary conditions at infinitely thin interfaces, taking into account the existence of surface polarizations. Essential details are given that describe how the formalism of distributions (generalized functions) allows these conditions to be derived directly from the differential form of Maxwell's equations. Using the same formalism we show the origin of alternative boundary conditions that exist in the literature. The boundary value problem for the wave equation is formulated, with an emphasis on the analysis of second harmonic magneto-optical effects in ferromagnetically ordered multilayers. An associated problem of conventions in setting up relationships between the nonlinear surface polarization and the fundamental electric field at the interfaces separating anisotropic layers through surface susceptibility tensors is discussed. A problem of self- consistency of the model is highlighted, relating to the existence of resealing procedures connecting the different conventions. The linear approximation with respect to magnetization is pursued, allowing rotational anisotropy of magneto-optical effects to be easily analyzed owing to the invariance of the corresponding polar and axial tensors under ordinary point groups. Required representations of the tensors are given for the groups infinitym, 4mm, mm2, and 3m, With regard to centrosymmetric multilayers, nonlinear volume polarization is also considered. A concise expression is given for its magnetic part, governed by an axial fifth-rank susceptibility tensor being invariant under the Curie group infinityinfinitym.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In situ ellipsometry and Kerr polarimetry have been used to follow the continuous evolution of the optical and magneto- optical properties of multiple layers of Co and Pd during their growth. Films were sputter deposited onto a Pd buffer layer on glass substrates up to a maximum of N = 10 bi-layer periods according to the scheme glass/Pd(10)Ar x (0.3Co/3Pd) (nm). Magnetic hysteresis measurements taken during the deposition consistently showed strong perpendicular anisotropy at all stages of film growth following the deposition of a single monolayer of Co. Magneto-optic signals associated with the normal-incidence polar Kerr effect indicated strong polarization of Pd atoms at both Co-Pd and Pd-Co interfaces and that the magnitude of the complex magneto-optic Voigt parameter and the magnetic moment of the Pd decrease exponentially with distance from the interface with a decay constant of 1.1 nm(- 1). Theoretical simulations have provided an understanding of the observations and allow the determination of the ultrathin- film values of the elements of the skew-symmetric permittivity tensor that describe the optical and magneto-optical properties for both CO and Pd. Detailed structure in the observed Kerr ellipticity shows distinct Pd-thickness-dependent oscillations with a spatial period of about 1.6 nm that are believed to be associated with quantum well levels in the growing Pd layer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The growth of magnetron sputtered Co/Au and Pd/Co/Au superlattices on Au and Pd buffer layers, deposited onto glass substrates, has been monitored optically and magneto-optically in real time, using rotating analyser ellipsometry and Kerr polarimetry, at a wavelength of 633 nm. The magneto-optical traces, combined with ex situ and in situ hysteresis loops, provide a detailed and informative fingerprint of the optical and magnetic properties of the films as they evolve during growth. For Co/Au, oscillations in the polar magneto-optical effect developed during the deposition of An overlayers on Co and these may be attributed to quantum well states. However, the hysteresis measurements show that the magnetic field required to maintain saturation magnetization throughout the experiment was larger than available in situ, introducing a degree of confusion concerning the interpretation of the data. This problem was overcome by the incorporation of Pd layers into the Co/Au structure, thereby eliminating variation in magnetic orientation during growth of the Au layers as a contributory factor to the observations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An effective ellipsometric technique to determine parameters that characterize second-harmonic optical and magneto-optical effects in centrosymmetric media within the electric-dipole approximation is proposed and outlined in detail. The parameters, which are ratios of components of the nonlinear-surface-susceptibility tensors, are obtained from experimental data related to the state of polarization of the second-harmonic-generated radiation as a function of the angle between the plane of incidence and the polarization plane of the incident, linearly polarized, fundamental radiation. Experimental details of the technique are described. A corresponding theoretical model is given as an example for a single isotropic surface assuming polycrystalline samples. The surfaces of air-Au and air-Ni (in magnetized and demagnetized states) have been investigated ex situ in ambient air, and the results are presented. A nonlinear, least-squares-minimization fitting procedure between experimental data and theoretical formulas has been shown to yield realistic, unambiguous results for the ratios corresponding to each of the above materials. Independent methods for verifying the validity of the fitting parameters are also presented. The influence of temporal variations at the surfaces on the state of polarization (due to adsorption, contamination, or oxidation) is also illustrated for the demagnetized air-Ni surface. (C) 2005 Optical Society of America

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the magneto-optical properties of a nanostructured metamaterial comprised of arrays of nickel nanorods embedded in an anodized aluminum oxide template. The rods are grown using a self-assembly bottom-up technique that provides a uniform, quasi-hexagonal array over a large area, quickly and at low cost. The tuneability of the magneto-optic response of the material is investigated by varying the nanorod dimensions: diameter, length and inter-rod spacing as well as the overall thickness of the template. It is demonstrated that the system acts as a sub-wavelength light trap with enhanced magneto-optical properties occurring at reflectivity minima corresponding to photonic resonances of the metamaterial. Changes in dimensions of the nickel rods on the order of tens of nanometers cause a spectral blue-shift in the peak magneto-optical response of 270 nm in the visible range. A plasmonic enhancement is also observed at lower wavelengths, which becomes increasingly damped with larger diameters and increased volume fraction of nickel inclusions. This type of structure has potential applications in high density magneto-optical data storage (up to 1011–12 rods per square inch), ultrafast magneto-plasmonic switching and optical components for telecommunications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we present core–shell nanowire arrays of gold coated with a nanometric layer of cobalt. Despite the extremely small Co volume, these core–shell nanowires display large magneto-optical activity and plasmonic resonance determined by the geometry of the structure. Therefore, we are able to tune both the plasmonic and magneto-optical response in the visible range. Through optical and ellipsometric measurements in transmission, and applying a magnetic field to the sample, it is possible to modulate the value of the phase angle (Del {Δ}) between the S and P polarised components. It was found that the core–shell sample produced an order of magnitude larger variation in Del with changing magnetic field direction, compared with hollow cobalt tubes. The enhancement of magneto optical properties through the plasmonic nature of the gold core is complemented with the ability to induce magnetic influence over optical properties via an externally applied field. Moreover, we demonstrate for the first time the ability to use the remanent magnetisation of the Co, in conjunction with the optical properties defined by the Au, to observe remanent optical states in this uniquely designed structure. This new class of magnetoplasmonic metamaterial has great potential in a wide range of applications, from bio-sensing to data storage due to the tuneable nature of multiple resonance modes and dual functionality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel diffusive gradients in thin film probe developed comprises diffusive gel layer of silver iodide (AgI) and a back-up Microchelex resin gel layer. 2D high-resolution images of sulfide and trace metals were determined respectively on the AgI gel by densitometric analysis and on the Microchelex resin layer with laser-ablation-inductively-coupled plasma mass spectrometry (LA-ICP-MS).We investigated the validity of the analytical procedures used for the determination of sulfide and trace metals. We found low relative standard deviations on replicate measurements, linear trace-metal calibration curves between the LA-ICP-MS signal and the true trace-metal concentration in the resin gel, and a good agreement of the sulfide results obtained with the AgI resin gel and with other analytical methods. The method was applied on anoxic sediment pore waters in an estuarine and marine system. Simultaneous remobilization of sulfide and trace metals was observed in the marine sediment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fine magnetic particles (size≅100 Å) belonging to the series ZnxFe1−xFe2O4 were synthesized by cold co-precipitation methods and their structural properties were evaluated using X-ray diffraction. Magnetization studies have been carried out using vibrating sample magnetometry (VSM) showing near-zero loss loop characteristics. Ferrofluids were then prepared employing these fine magnetic powders using oleic acid as surfactant and kerosene as carrier liquid by modifying the usually reported synthesis technique in order to induce anisotropy and enhance the magneto-optical signals. Liquid thin films of these fluids were prepared and field-induced laser transmission through these films was studied. The transmitted light intensity decreases at the centre with applied magnetic field in a linear fashion when subjected to low magnetic fields and saturate at higher fields. This is in accordance with the saturation in cluster formation. The pattern exhibited by these films in the presence of different magnetic fields was observed with the help of a CCD camera and was recorded photographically.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A study of the magneto-optical (MO) spectral response of Co nanoparticles embedded in MgO as a function of their size and concentration in the spectral range from 1.4 to 4.3 eV is presented. The nanoparticle layers were obtained by sputtering at different deposition temperatures. Transmission electron microscopy measurements show that the nanoparticles have a complex structure which consists of a crystalline core having a hexagonal close-packed structure and an amorphous crust. Using an effective-medium approximation we have obtained the MO constants of the Co nanoparticles. These MO constants are different from those of continuous Co layers and depend on the size of the crystalline core. We associate these changes with the size effect of the intraband contribution to the MO constants, related to a reduction of the relaxation time of the electrons into the nanoparticles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report magnetic and magneto-optical measurements of two Mn12 single-molecule magnet derivatives isolated in organic glasses. Field-dependent magnetic circular dichroism (MCD) intensity curves (hysteresis cycles) are found to be essentially identical to superconducting quantum interference device magnetization results and provide experimental evidence for the potential of the optical technique for magnetic characterization. Optical observation of magnetic tunneling has been achieved by studying the decay of the MCD signal at weak applied magnetic field

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxide free stable metallic nanofluids have the potential for various applications such as in thermal management and inkjet printing apart from being a candidate system for fundamental studies. A stable suspension of nickel nanoparticles of ∼5 nm size has been realized by a modified two-step synthesis route. Structural characterization by x-ray diffraction and transmission electron microscopy shows that the nanoparticles are metallic and are phase pure. The nanoparticles exhibited superparamagnetic properties. The magneto-optical transmission properties of the nickel nanofluid (Ni-F) were investigated by linear optical dichroism measurements. The magnetic field dependent light transmission studies exhibited a polarization dependent optical absorption, known as optical dichroism, indicating that the nanoparticles suspended in the fluid are non-interacting and superparamagnetic in nature. The nonlinear optical limiting properties of Ni-F under high input optical fluence were then analyzed by an open aperture z-scan technique. The Ni-F exhibits a saturable absorption at moderate laser intensities while effective two-photon absorption is evident at higher intensities. The Ni-F appears to be a unique material for various optical devices such as field modulated gratings and optical switches which can be controlled by an external magnetic field

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fine magnetic particles (sizeffi100A ˚ ) belonging to the series ZnxFe1 xFe2O4 were synthesized by cold co-precipitation methods and their structural properties were evaluated using X-ray diffraction. Magnetization studies have been carried out using vibrating sample magnetometry (VSM) showing near-zero loss loop characteristics. Ferrofluids were then prepared employing these fine magnetic powders using oleic acid as surfactant and kerosene as carrier liquid by modifying the usually reported synthesis technique in order to induce anisotropy and enhance the magneto-optical signals. Liquid thin films of these fluids were prepared and field-induced laser transmission through these films was studied. The transmitted light intensity decreases at the centre with applied magnetic field in a linear fashion when subjected to low magnetic fields and saturate at higher fields. This is in accordance with the saturation in cluster formation. The pattern exhibited by these films in the presence of different magnetic fields was observed with the help of a CCD camera and was recorded photographically