352 resultados para Macroalgae


Relevância:

20.00% 20.00%

Publicador:

Resumo:

[EN] Global warming is affecting all major ecosystems, including temperate reefs where canopy-forming seaweeds provide biogenic habitat. In contrast to the rapidly growing recognition of how climate affects the performance and distribution of individuals and populations, relatively little is known about possible links between climate and biogenic habitat structure. We examined the relationship between several ocean temperature characteristics, expressed on time-scales of days, months and years, on habitat patch characteristics on 24 subtidal temperate reefs along a latitudinal gradient (Western Australia; ca 34 to 27º S). Significant climate related variation in habitat structure was observed, even though the landscape cover of kelp and fucalean canopies did not change across the climate gradient: monospecific patches of kelp became increasingly dominant in warmer climates, at the expense of mixed kelp-fucalean canopies. The decline in mixed canopies was associated with an increase in the abundance of Sargassum spp., replacing a more diverse canopy assemblage of Scytothalia doryocarpa and several other large fucoids. There were no observed differences in the proportion of open gaps or gap characteristics. These habitat changes were closely related to patterns in minimum temperatures and temperature thresholds (days > 20 °C), presumably because temperate algae require cool periods for successful reproduction and recruitment (even if the adults can survive warmer temperatures). Although the observed habitat variation may appear subtle, similar structural differences have been linked to a range of effects on canopy-associated organisms through the provision of habitat and ecosystem engineering. Consequently, our study suggests that the magnitude of projected temperature increase is likely to cause changes in habitat structure and thereby indirectly affect numerous habitat-dependent plants and animals

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Departamento de Biología Vegetal (Botánica), Universidad de La Laguna, La Laguna, Canary Islands

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Laboratory of Coastal Biodiversity, CIMAR-Centro Interdisciplinar de Investigação Marinha e Ambiental, Porto, Portugal

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The vegetation of a small fjord and its adjacent open shore was documented by subaquatic video. The distribution of individual species of macroalgae and the composition of assemblages were compared with gradients of light availability, hydrography, slope inclination, substratum, and exposition to turbulence and ice. The sublittoral fringe is usually abraded by winterly ice floes and devoid of large, perennial algae. Below this zone, the upper sublittoral is dominated by Desmarestia menziesii on steep rock faces, where water movements become irregular, or by Ascoseira mirabilis and Palmaria decipiens on weakly inclined slopes with steady rolling water movements. In the central sublittoral above 15 m, where turbulence is still active, Desmarestia anceps is outcompeting all other species on solid substratum, However, the species is not able to persist on loose material under these conditions. Instead, Himantothallus grandifolius may occur. Deeper, where turbulence usually is negligible, Desmarestia anceps also covers loose material. The change of dominance to Himantothallus grandifolius in the deep sublittoral cannot completely be explained at present. Himantothallus grandifolius also prevails in a mixed assemblage under the influence of grounding icebergs. Most of the smaller algae are opportunists with different degrees of tolerance for turbulence, but some apparently need more stable microhabitats and thus are dependent from continuing suppression of competitive large phaeophytes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ocean acidification, the result of increased dissolution of carbon dioxide (CO2) in seawater, is a leading subject of current research. The effects of acidification on non-calcifying macroalgae are, however, still unclear. The current study reports two 1-month studies using two different macroalgae, the red alga Palmaria palmata (Rhodophyta) and the kelp Saccharina latissima (Phaeophyta), exposed to control (pHNBS = 8.04) and increased (pHNBS = 7.82) levels of CO2-induced seawater acidification. The impacts of both increased acidification and time of exposure on net primary production (NPP), respiration (R), dimethylsulphoniopropionate (DMSP) concentrations, and algal growth have been assessed. In P. palmata, although NPP significantly increased during the testing period, it significantly decreased with acidification, whereas R showed a significant decrease with acidification only. S. latissima significantly increased NPP with acidification but not with time, and significantly increased R with both acidification and time, suggesting a concomitant increase in gross primary production. The DMSP concentrations of both species remained unchanged by either acidification or through time during the experimental period. In contrast, algal growth differed markedly between the two experiments, in that P. palmata showed very little growth throughout the experiment, while S. latissima showed substantial growth during the course of the study, with the latter showing a significant difference between the acidified and control treatments. These two experiments suggest that the study species used here were resistant to a short-term exposure to ocean acidification, with some of the differences seen between species possibly linked to different nutrient concentrations between the experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metabolic processes have the potential to modulate the effects of ocean acidification (OA) in nearshore macroalgal beds. We investigated whether natural mixed assemblages of the articulate coralline macroalgae Arthrocardia corymbosa and understory crustose coralline algae (CCA) altered pH and O2 concentrations within and immediately above their canopies. In a unidirectional flume, we tested the effect of water velocity (0-0.1 m/s), bulk seawater pH (ambient pH 8.05, and pH 7.65), and irradiance (photosynthetically saturating light and darkness) on pH and O2 concentration gradients, and the derived concentration boundary layer (CBL) thickness. At bulk seawater pH 7.65 and slow velocities (0 and 0.015 m/s), pH at the CCA surface increased to 7.90-8.00 in the light. Although these manipulations were short term, this indicates a potential daytime buffering capacity that could alleviate the effects of OA. Photosynthetic activity also increased O2 concentrations at the surface of the CCA. However, this moderating capacity was flow dependent; the CBL thickness decreased from an average of 26.8 mm from the CCA surface at 0.015 m/s to 4.1 mm at 0.04 m/s. The reverse trends occurred in the dark, with respiration causing pH and O2 concentrations to decrease at the CCA surface. At all flow velocities the CBL thicknesses (up to 68 mm) were much greater than those previously published, indicating that the presence of canopies can alter the CBL substantially. In situ, the height of macroalgal canopies can be an order of magnitude larger than those used here, indicating that the degree of buffering to OA will be context dependent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ocean acidification (OA) is a reduction in oceanic pH due to increased absorption of anthropogenically produced CO2. This change alters the seawater concentrations of inorganic carbon species that are utilized by macroalgae for photosynthesis and calcification: CO2 and HCO3 increase; CO32 decreases. Two common methods of experimentally reducing seawater pH differentially alter other aspects of carbonate chemistry: the addition of CO2 gas mimics changes predicted due to OA, while the addition of HCl results in a comparatively lower [HCO3]. We measured the short-term photosynthetic responses of five macroalgal species with various carbon-use strategies in one of three seawater pH treatments: pH 7.5 lowered by bubbling CO2 gas, pH 7.5 lowered by HCl, and ambient pH 7.9. There was no difference in photosynthetic rates between the CO2, HCl, or pH 7.9 treatments for any of the species examined. However, the ability of macroalgae to raise the pH of the surrounding seawater through carbon uptake was greatest in the pH 7.5 treatments. Modeling of pH change due to carbon assimilation indicated that macroalgal species that could utilize HCO3 increased their use of CO2 in the pH 7.5 treatments compared to pH 7.9 treatments. Species only capable of using CO2 did so exclusively in all treatments. Although CO2 is not likely to be limiting for photosynthesis for the macroalgal species examined, the diffusive uptake of CO2 is less energetically expensive than active HCO3 uptake, and so HCO3-using macroalgae may benefit in future seawater with elevated CO2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since pre-industrial times, uptake of anthropogenic CO2 by surface ocean waters has caused a documented change of 0.1 pH units. Calcifying organisms are sensitive to elevated CO2 concentrations due to their calcium carbonate skeletons. In temperate rocky intertidal environments, calcifying and noncalcifying macroalgae make up diverse benthic photoautotrophic communities. These communities may change as calcifiers and noncalcifiers respond differently to rising CO2 concentrations. In order to test this hypothesis, we conducted an 86?d mesocosm experiment to investigate the physiological and competitive responses of calcifying and noncalcifying temperate marine macroalgae to 385, 665, and 1486 µatm CO2. We focused on comparing 2 abundant red algae in the Northeast Atlantic: Corallina officinalis (calcifying) and Chondrus crispus (noncalcifying). We found an interactive effect of CO2 concentration and exposure time on growth rates of C. officinalis, and total protein and carbohydrate concentrations in both species. Photosynthetic rates did not show a strong response. Calcification in C. officinalis showed a parabolic response, while skeletal inorganic carbon decreased with increasing CO2. Community structure changed, as Chondrus crispus cover increased in all treatments, while C. officinalis cover decreased in both elevated-CO2 treatments. Photochemical parameters of other species are also presented. Our results suggest that CO2 will alter the competitive strengths of calcifying and noncalcifying temperate benthic macroalgae, resulting in different community structures, unless these species are able to adapt at a rate similar to or faster than the current rate of increasing sea-surface CO2 concentrations.