981 resultados para MULTIDETECTOR CT
Resumo:
Objectives: Previous evidence supports a direct relationship between the calcium burden (volume) on post-contrast CT with the percent internal carotid artery (ICA) stenosis at the carotid bifurcation. We sought to further investigate this relationship by comparing non-enhanced CT (NECT) and digital subtraction angiography (DSA). Methods: 50 patients (aged 41-82 years) were retrospectively identified who had undergone cervical NECT and DSA. A 64-multidetector array CT (MDCT) scanner was utilised and the images reviewed using preset window widths/levels (30/300) optimised to calcium, with the volumes measured via three-dimensional reconstructive software. Stenosis measurements were performed on DSA and luminal diameter stenoses >40% were considered "significant". Volume thresholds of 0.01, 0.03, 0.06, 0.09 and 0.12 cm(3) were utilised and Pearson's correlation coefficient (r) was calculated to correlate the calcium volume with percent stenosis. Results: Of 100 carotid bifurcations, 88 were available and of these 7 were significantly stenotic. The NECT calcium volume moderately correlated with percent stenosis on DSA r=0.53 (p<0.01). A moderate-strong correlation was found between the square root of calcium volume on NECT with percent stenosis on DSA (r=0.60, p<0.01). Via a receiver operating characteristic curve, 0.06 cm(3) was determined to be the best threshold (sensitivity 100%, specificity 90.1%, negative predictive value 100% and positive predictive value 46.7%) for detecting significant stenoses. Conclusion: This preliminary investigation confirms a correlation between carotid bifurcation calcium volume and percent ICA stenosis and is promising for the optimal threshold for stenosis detection. Future studies could utilise calcium volumes to create a "score" that could predict high grade stenosis.
Resumo:
Ultrasonography (US) is an essential imaging tool for identifying abnormalities of the liver parenchyma, biliary tract and vascular system. US has replaced radiography as the initial imaging procedure in screening for liver disease in small animals. There are few reports of the use of conventional and helical computed tomography (CT) to assess canine or feline parenchymal and neoplastic liver disease and biliary disorders. In human medicine the development of multidetector- row helical computed tomography (MDCT), with its superior spatial and temporal resolution, has resulted in improved detection and characterization of diffuse and focal liver lesions. The increased availability of MDCT in veterinary practice provides incentive to develop MDCT protocols for liver imaging in small animals. The purpose of this study is to assess the rule of MDCT in the characterization of hepatobiliary diseases in small animals; and to compare this method with conventional US. Candidates for this prospective study were 175 consecutive patients (dogs and cats) referred for evaluation of hepatobiliary disease. The patients underwent liver US and MDCT. Percutaneous needle biopsy was performed on all liver lesions or alterations encountered. As for gallbladder, histopatological evaluation was obtained from cholecystectomy specimens. Ultrasonographic findings in this study agreed well with those of previous reports. A protocol for dual-phase liver MDCT in small animals has been described. MDCT findings in parenchymal disorders of the liver, hepatic neoplasia and biliary disorders are here first described in dogs and cats and compared with the corresponding features in human medicine. The ability of MDCT in detection and characterization of hepatobiliary diseases in small animals is overall superior to conventional US. Ultrasonography and MDCT scanning, however, play complementary rules in the evaluation of these diseases. Many conditions have distinctive imaging features that may permit diagnosis. In most instances biopsy is required for definitive diagnosis.
Resumo:
To study the effect of a nonlinear noise filter on the detection of simulated endoleaks in a phantom with 80- and 100-kVp multidetector computed tomographic (CT) angiography.
Resumo:
BACKGROUND: Although urinalysis is simple and inexpensive to perform, the finding of microhaematuria on urinalysis may be unreliable for diagnosing urolithiasis. OBJECTIVE: To evaluate microhaematuria as a diagnostic marker for urolithiasis compared with low-dose unenhanced multidetector computed tomography (MDCT) as the "gold standard". SETTING: A level 1 emergency department in a tertiary referral university teaching hospital. DESIGN: Retrospective analysis. METHODS: A study was undertaken to assess whether the finding of microhaematuria was diagnostic for urolithiasis using a low-dose unenhanced MDCT-based diagnosis as the reference standard by reviewing the records of all patients who presented to the emergency department with colicky flank pain and underwent a CT scan between January 2003 and December 2005. RESULTS: Urolithiasis was present (as defined by low-dose unenhanced MDCT) in 507/638 patients (79%); 341/638 (53%) were true positive for urolithiasis, 76 (12%) were true negative, 55 (9%) were false positive and 166 (26%) were false negative. Microhaematuria as a test for urolithiasis in patients presenting to the emergency department therefore has a sensitivity, specificity, positive predictive value and negative predictive value of 67%, 58%, 86% and 31%, respectively. 58% of the urinalysis results were negative for haematuria in the subset of patients with significant alternative diagnoses. CONCLUSIONS: The sensitivity, specificity and negative predictive value of microhaematuria on urinalysis for urolithiasis using unenhanced MDCT as the reference standard were low. This suggests that, when urolithiasis is clinically suspected, unenhanced MDCT is indicated without urinalysis being a prerequisite.
Resumo:
Flat-panel volume computed tomography (fpVCT) is a recent development in imaging. We discuss some of the musculoskeletal applications of a high-resolution flat-panel CT scanner. FpVCT has four main advantages over conventional multidetector computed tomography (MDCT): high-resolution imaging; volumetric coverage; dynamic imaging; omni-scanning. The overall effective dose of fpVCT is comparable to that of MDCT scanning. Although current fpVCT technology has higher spatial resolution, its contrast resolution is slightly lower than that of MDCT (5-10HU vs. 1-3HU respectively). We discuss the efficacy and potential utility of fpVCT in various applications related to musculoskeletal radiology and review some novel applications for pediatric bones, soft tissues, tumor perfusion, and imaging of tissue-engineered bone growth. We further discuss high-resolution CT and omni-scanning (combines fluoroscopic and tomographic imaging).
Resumo:
PURPOSE: To determine if multi–detector row computed tomography (CT) can replace conventional radiography and be performed alone in severe trauma patients for the depiction of thoracolumbar spine fractures. MATERIALS AND METHODS: One hundred consecutive severe trauma patients who underwent conventional radiography of the thoracolumbar spine as well as thoracoabdominal multi–detector row CT were prospectively identified. Conventional radiographs were reviewed independently by three radiologists and two orthopedic surgeons; CT images were reviewed by three radiologists. Reviewers were blinded both to one another’s reviews and to the results of initial evaluation. Presence, location, and stability of fractures, as well as quality of reviewed images, were assessed. Statistical analysis was performed to determine sensitivity and interobserver agreement for each procedure, with results of clinical and radiologic follow-up as the standard of reference. The time to perform each examination and the radiation dose involved were evaluated. A resource cost analysis was performed. RESULTS: Sixty-seven fractured vertebrae were diagnosed in 26 patients. Twelve patients had unstable spine fractures. Mean sensitivity and interobserver agreement, respectively, for detection of unstable fractures were 97.2% and 0.951 for multi–detector row CT and 33.3% and 0.368 for conventional radiography. The median times to perform a conventional radiographic and a multi–detector row CT examination, respectively, were 33 and 40 minutes. Effective radiation doses at conventional radiography of the spine and thoracoabdominal multi–detector row CT, respectively, were 6.36 mSv and 19.42 mSv. Multi–detector row CT enabled identification of 146 associated traumatic lesions. The costs of conventional radiography and multi–detector row CT, respectively, were $145 and $880 per patient. CONCLUSION: Multi–detector row CT is a better examination for depicting spine fractures than conventional radiography. It can replace conventional radiography and be performed alone in patients who have sustained severe trauma.
Resumo:
Although MRI is utilized for planning the resection of soft-tissue tumors, it is not always capable of differentiating benign from malignant lesions. The risk of local recurrence of soft-tissue sarcomas is increased when biopsies are performed before resection and by inadequate resections. PET associated with computed tomography using fluorodeoxyglucose labeled with fluorine-18 ((18)F-FDG PET/CT) may help differentiate between benign and malignant tumors, thus avoiding inadequate resections and making prior biopsies unnecessary. The purpose of this study was to evaluate the usefulness of (18)F-FDG PET/CT in differentiating benign from malignant solid soft-tissue lesions. Patients with solid lesions of the limbs or abdominal wall detected by MRI were submitted to (18)F-FDG PET/CT. The maximum standardized uptake value (SUVmax) cutoff was determined to differentiate malignant from benign tumors. Regardless of the (18)F-FDG PET/CT results all patients underwent biopsy and surgery. MRI was performed in 54 patients, and 10 patients were excluded because of purely lipomatose or cystic lesions. (18)F-FDG PET/CT was performed in the remaining 44 patients. Histopathology revealed 26 (59%) benign and 18 (41%) malignant soft-tissue lesions. A significant difference in SUVmax was observed between benign and malignant soft-tissue lesions. The SUVmax cutoff of 3.0 differentiated malignant from benign lesions with 100% sensitivity, 83.3% specificity, 89.6% accuracy, 78.3% positive predictive value, and 100% negative predictive value. (18)F-FDG PET/CT seems to be able to differentiate benign from malignant soft-tissue lesions with good accuracy and very high negative predictive value. Incorporating (18)F-FDG PET/CT into the diagnostic algorithm of these patients may prevent inadequate resections and unnecessary biopsies.
Resumo:
OBJECTIVE: This study evaluated the influence of metallic dental artifacts on the accuracy of simulated mandibular lesion detection by using multislice technology. MATERIAL AND METHODS: Fifteen macerated mandibles were used. Perforations were done simulating bone lesions and the mandibles were subjected to axial 16 rows multislice CT images using 0.5 mm of slice thickness with 0.3 mm interval of reconstruction. Metallic dental restorations were done and the mandibles were subjected again to CT in the same protocol. The images were analyzed to detect simulated lesions in the mandibles, verifying the loci number and if there was any cortical perforation exposing medullar bone. The analysis was performed by two independent examiners using e-film software. RESULTS: The samples without artifacts presented better results compared to the gold standard (dried mandible with perforations). In the samples without artifacts, all cortical perforation were identified and 46 loci were detected (of 51) in loci number analysis. Among the samples with artifacts, 12 lesions out of 14 were recognized regarding medullar invasion, and 40 out of 51 concerning loci number. The sensitivity in samples without artifacts was 90% and 100% regarding loci number and medullar invasion, respectively. In samples with artifacts, these values dropped to 78% and 86%, respectively. The presence of metallic restorations affected the sensitivity values of the method, but the difference was not significant (p>0.05). CONCLUSIONS: Although there were differences in the results of samples with and without artifacts, the presence of metallic restoration did not lead to misinterpretation of the final diagnosis. However, the validity of multislice CT imaging in this study was established for detection of simulated mandibular bone lesions.
Resumo:
Human N-acetyltransferase type 1 (NAT1) catalyses the N- or O-acetylation of various arylamine and heterocyclic amine substrates and is able to bioactivate several known carcinogens. Despite wide inter-individual variability in activity, historically, NAT1 was considered to be monomorphic in nature. However, recent reports of allelic variation at the NAT1 locus suggest that it may be a polymorphically expressed enzyme. In the present study, peripheral blood mononuclear cell NAT1 activity in 85 individuals was found to be bimodally distributed with approximately 8% of the population being slow acetylators. Subsequent sequencing of the individuals having slow acetylator status showed all to have either a (CT)-T-190 or G(560)A base substitution located in the protein encoding region of the NAT1 gene. The (CT)-T-190 base substitution changed a highly conserved Arg(64), which others have shown to be essential for fully functional NAT1 protein. The (CT)-T-190 mutation has not been reported previously and we have named it NAT1*17. The G(560)A mutation is associated with the base substitutions previously observed in the NAT1*10 allele and this variant (NAT1*14) encodes for a protein with reduced acetylation capacity. A novel method using linear PCR and dideoxy terminators was developed for the detection of NAT1*14 and NAT1*17. Neither of these variants was found in the rapid acetylator population. We conclude that both the (CT)-T-190 (NAT1*17) and G(560)A (NAT1*14) NAT1 structural variants are involved in a distinct NAT1 polymorphism. Because NAT1 can bioactivate several carcinogens, this polymorphism may have implications for cancer risk in individual subjects. (C) 1998 Chapman & Hall Ltd.
Resumo:
Background: Concerns exist regarding the effect of radiation dose from paediatric pelvic CT scans and the potential later risk of radiation-induced neoplasm and teratogenic outcomes in these patients. Objective: To assess the diagnostic quality of CT images of the paediatric pelvis using either reduced mAs or increased pitch compared with standard settings. Materials and methods: A prospective study of pelvic CT scans of 105 paediatric patients was performed using one of three protocols: (1) 31 at a standard protocol of 200 mA with rotation time of 0.75 s at 120 kVp and a pitch factor approximating 1.4; (2) 31 at increased pitch factor approaching 2 and 200 mA; and (3) 43 at a reduced setting of 100 mA and a pitch factor of 1.4. All other settings remained the same in all three groups. Image quality was assessed by radiologists blinded to the protocol used in each scan. Results: No significant difference was found between the quality of images acquired at standard settings and those acquired at half the standard mAs. The use of increased pitch factor resulted in a higher proportion of poor images. Conclusions: Images acquired at 120 kVp using 75 mAs are equivalent in diagnostic quality to those acquired at 150 mAs. Reduced settings can provide useful imaging of the paediatric pelvis and should be considered as a standard protocol in these situations.
Resumo:
OBJECTIVE. Coronary MDCT angiography has been shown to be an accurate noninvasive tool for the diagnosis of obstructive coronary artery disease (CAD). Its sensitivity and negative predictive value for diagnosing percentage of stenosis are unsurpassed compared with those of other noninvasive testing methods. However, in its current form, it provides no information regarding the physiologic impact of CAD and is a poor predictor of myocardial ischemia. CORE320 is a multicenter multinational diagnostic study with the primary objective to evaluate the diagnostic accuracy of 320-MDCT for detecting coronary artery luminal stenosis and corresponding myocardial perfusion deficits in patients with suspected CAD compared with the reference standard of conventional coronary angiography and SPECT myocardial perfusion imaging. CONCLUSION. We aim to describe the CT acquisition, reconstruction, and analysis methods of the CORE320 study.
Resumo:
Recently, stress myocardial computed tomographic perfusion (CTP) was shown to detect myocardial ischemia. Our main objective was to evaluate the feasibility of dipyridamole stress CTP and compare it to single-photon emission computed tomography (SPECT) to detect significant coronary stenosis using invasive conventional coronary angiography (CCA; stenosis >70%) as the reference method. Thirty-six patients (62 +/- 8 years old, 20 men) with previous positive results with SPECT (<2 months) as the primary inclusion criterion and suspected coronary artery disease underwent a customized multidetector-row CT protocol with myocardial perfusion evaluation at rest and during stress and coronary CT angiography (CTA). Multidetector-row computed tomography was performed in a 64-slice scanner with dipyridamole stress perfusion acquisition before a second perfusion/CT angiographic acquisition at rest. Independent blinded observers performed analysis of images from CTP, CTA, and CCA. All 36 patients completed the CT protocol with no adverse events (mean radiation dose 14.7 +/- 3.0 mSv) and with interpretable scans. CTP results were positive in 27 of 36 patients (75%). From the 9 (25%) disagreements, 6 patients had normal coronary arteries and 2 had no significant stenosis (8 false-positive results with SPECT, 22%). The remaining patient had an occluded artery with collateral flow confirmed by conventional coronary angiogram. Good agreement was demonstrated between CTP and SPECT on a per-patient analysis (kappa 0.53). In 26 patients using CCA as reference, sensitivity, specificity, and positive and negative predictive values were 88.0%, 79.3%, 66.7%, and 93.3% for CTP and 68.8, 76.1%, 66.7%, and 77.8%, for SPECT, respectively (p = NS). In conclusion, dipyridamole CT myocardial perfusion at rest and during stress is feasible and results are similar to single-photon emission CT scintigraphy. The anatomical-perfusion information provided by this combined CT protocol may allow identification of false-positive results by SPECT. (C) 2010 Elsevier Inc. All rights reserved. (Am J Cardiol 2010;106:310-315)
Resumo:
Introduction: mild head trauma (MHT) is defined as a transient neurological deficit after trauma with a history of impairment or loss of consciousness lasting less than 15 min and/or posttraumatic amnesia, and a Glasgow Coma Scale between 13 and 15 on hospital admission. We evaluated 50 MHT patients 18 months after the trauma, addressing signs and symptoms of post-concussion syndrome, quality of life and the presence of anxiety and depression. We correlate those findings with the S100B protein levels and cranial CT scan performed at hospital admission after the trauma. Method: patients were asked to fill out questionnaires to assess quality of life (SF36), anxiety and depression (HADS), and signs and symptoms of post-concussion syndrome. For the control group, we asked the patient`s household members, who had no history of head trauma of any type, to answer the same questionnaires for comparison. Results: total quality of life index for patients with MHT was 58.16 (+/-5), lower than the 73.47 (+/-4) presented by the control group. Twenty patients (55.2%) and four (11.1%) controls were depressed. Seventeen patients (47.2%) presented anxiety, whereas only eight (22.2%) controls were considered anxious. Victims of MHT complained more frequently of loss of balance, dry mouth, pain in the arms, loss of memory and dizziness than their respective controls (p < 0.05). We found no correlation between the presence of these signs and symptoms, quality of life, presence of anxiety and depression with S100B protein levels or with presence of injury in the cranial CT performed at hospital admission. Conclusion: MHT is associated with a higher incidence of post-concussion syndrome symptoms, lower quality of life and anxiety than their respective controls even 18 months after the trauma. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Purpose: To evaluate the changes over time in the pattern and extent of parenchymal abnormalities in asbestos-exposed workers after cessation of exposure and to compare 3 proposed semiquantitative methods with a careful side-by-side comparison of the initial and the follow-Lip computed tomography (CT) images. Materials and Methods: The study included 52 male asbestos workers (mean age SD, 62.2y +/- 8.2) who had baseline high-resolution CT after cessation of exposure and follow-up CT 3 to 5 years later. Two independent thoracic radiologists quantified the findings according to the scoring systems proposed by Huuskonen, Gamsu, and Sette and then did a side-by-side comparison of the 2 sets of scans without awareness of the dates of the CT scans. Results: There was no difference in the prevalence of the 2 most common parenchymal abnormalities (centrilobular small dotlike or branching opacities and interstitial lines) between the initial and follow-up CT scans. Honeycombing (20%) and traction bronchiectasis and bronchiolectasis (50%) were seen more commonly on the follow-up CT than on the initial examination (10% and 33%, respectively) (P = 0.01). Increased extent of parenchymal abnormalities was evident on side-by-side comparison in 42 (81%) patients but resulted in an increase in score in at least 1 semiquantitative system in only 16 (31%) patients (all P > 0.01, signed test). Conclusions: The majority of patients with previous asbestos exposure show evidence of progression of disease on CT at 3 to 5 years follow-up but this progression is usually not detected by the 3 proposed semiquantitative scoring schemes.