117 resultados para MTO


Relevância:

10.00% 10.00%

Publicador:

Resumo:

La estimación de caudales resulta fundamental en el diseño de infraestructuras, obras hidráulicas y en la planificación de usos de suelo. Con frecuencia no se encuentran disponibles estaciones de aforo en la zona de estudio, y los modelos hidrometeorológicos se convierten en una herramienta imprescindible para la estimación de caudales. Estos modelos requieren a su vez el dato de inten- sidad máxima anual para una duración y período de retorno o una ley IDF. Las curvas IDF actualmente utilizadas en España fueron propuestas en los años setenta por lo que parece adecuado plantear una actualización tanto de los registros y de las nuevas estaciones disponibles como de la metodología, incorporando nuevas técnicas al estudio de esta variable. En este trabajo se presentan los resultados de esta actualización, en el que se ha utilizado el méto- do de regionalización del tipo índice de avenida para el análisis de frecuencias de intensidades máximas. Este método proporciona estimas más robustas que los métodos tradicionales, siendo esta propiedad especialmente importante en el caso de valores extremos, en los que las series son cortas, y cuando se requieran estimaciones de bajas frecuencias (altos períodos de retorno).Para el ajuste se ha utilizado la función SQRT-ET máx frente a la función de distribución Gumbel actualmente utilizada – pues presentando esta última un coeficiente de asimetría fijo de 1,14, subestima los cuantiles de manera sistemática al menos en el área de influencia mediterránea. Los autores desarrollan una nueva metodología para extender los resultados obtenidos en el análisis regional al resto del territorio español, proponiendo dos funciones, una que relaciona la intensidad con el período de retorno y otra que relaciona esta variable con la duración, de manera que, finalmente, se puede obtener la intensidad máxima para una duración y período de retorno en cualquier punto de la España peninsular. Dado el carácter práctico de la investigación, los resultados se presentan en soporte informático, y se ha diseñado una aplicación gis, MAXIN, de libre difusión, que está disponible en: http://www.for estales.upm.es/hidraulica/paginas/programas/programas.htm

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Tara Oceans Expedition (2009-2013) sampled the world oceans on board a 36 m long schooner, collecting environmental data and organisms from viruses to planktonic metazoans for later analyses using modern sequencing and state-of-the-art imaging technologies. Tara Oceans Data are particularly suited to study the genetic, morphological and functional diversity of plankton. The present dataset contains navigation and meteorological data measured during one campaign of the Tara Oceans Expedition. Latitude and Longitude were obtained from TSG data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Tara Oceans Expedition (2009-2013) sampled the world oceans on board a 36 m long schooner, collecting environmental data and organisms from viruses to planktonic metazoans for later analyses using modern sequencing and state-of-the-art imaging technologies. Tara Oceans Data are particularly suited to study the genetic, morphological and functional diversity of plankton. The present dataset contains navigation and meteorological data measured during one campaign of the Tara Oceans Expedition. Latitude and Longitude were obtained from TSG data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This research is motivated by the need for considering lot sizing while accepting customer orders in a make-to-order (MTO) environment, in which each customer order must be delivered by its due date. Job shop is the typical operation model used in an MTO operation, where the production planner must make three concurrent decisions; they are order selection, lot size, and job schedule. These decisions are usually treated separately in the literature and are mostly led to heuristic solutions. The first phase of the study is focused on a formal definition of the problem. Mathematical programming techniques are applied to modeling this problem in terms of its objective, decision variables, and constraints. A commercial solver, CPLEX is applied to solve the resulting mixed-integer linear programming model with small instances to validate the mathematical formulation. The computational result shows it is not practical for solving problems of industrial size, using a commercial solver. The second phase of this study is focused on development of an effective solution approach to this problem of large scale. The proposed solution approach is an iterative process involving three sequential decision steps of order selection, lot sizing, and lot scheduling. A range of simple sequencing rules are identified for each of the three subproblems. Using computer simulation as the tool, an experiment is designed to evaluate their performance against a set of system parameters. For order selection, the proposed weighted most profit rule performs the best. The shifting bottleneck and the earliest operation finish time both are the best scheduling rules. For lot sizing, the proposed minimum cost increase heuristic, based on the Dixon-Silver method performs the best, when the demand-to-capacity ratio at the bottleneck machine is high. The proposed minimum cost heuristic, based on the Wagner-Whitin algorithm is the best lot-sizing heuristic for shops of a low demand-to-capacity ratio. The proposed heuristic is applied to an industrial case to further evaluate its performance. The result shows it can improve an average of total profit by 16.62%. This research contributes to the production planning research community with a complete mathematical definition of the problem and an effective solution approach to solving the problem of industry scale.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The increasing emphasis on mass customization, shortened product lifecycles, synchronized supply chains, when coupled with advances in information system, is driving most firms towards make-to-order (MTO) operations. Increasing global competition, lower profit margins, and higher customer expectations force the MTO firms to plan its capacity by managing the effective demand. The goal of this research was to maximize the operational profits of a make-to-order operation by selectively accepting incoming customer orders and simultaneously allocating capacity for them at the sales stage. ^ For integrating the two decisions, a Mixed-Integer Linear Program (MILP) was formulated which can aid an operations manager in an MTO environment to select a set of potential customer orders such that all the selected orders are fulfilled by their deadline. The proposed model combines order acceptance/rejection decision with detailed scheduling. Experiments with the formulation indicate that for larger problem sizes, the computational time required to determine an optimal solution is prohibitive. This formulation inherits a block diagonal structure, and can be decomposed into one or more sub-problems (i.e. one sub-problem for each customer order) and a master problem by applying Dantzig-Wolfe’s decomposition principles. To efficiently solve the original MILP, an exact Branch-and-Price algorithm was successfully developed. Various approximation algorithms were developed to further improve the runtime. Experiments conducted unequivocally show the efficiency of these algorithms compared to a commercial optimization solver.^ The existing literature addresses the static order acceptance problem for a single machine environment having regular capacity with an objective to maximize profits and a penalty for tardiness. This dissertation has solved the order acceptance and capacity planning problem for a job shop environment with multiple resources. Both regular and overtime resources is considered. ^ The Branch-and-Price algorithms developed in this dissertation are faster and can be incorporated in a decision support system which can be used on a daily basis to help make intelligent decisions in a MTO operation.^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The increasing emphasis on mass customization, shortened product lifecycles, synchronized supply chains, when coupled with advances in information system, is driving most firms towards make-to-order (MTO) operations. Increasing global competition, lower profit margins, and higher customer expectations force the MTO firms to plan its capacity by managing the effective demand. The goal of this research was to maximize the operational profits of a make-to-order operation by selectively accepting incoming customer orders and simultaneously allocating capacity for them at the sales stage. For integrating the two decisions, a Mixed-Integer Linear Program (MILP) was formulated which can aid an operations manager in an MTO environment to select a set of potential customer orders such that all the selected orders are fulfilled by their deadline. The proposed model combines order acceptance/rejection decision with detailed scheduling. Experiments with the formulation indicate that for larger problem sizes, the computational time required to determine an optimal solution is prohibitive. This formulation inherits a block diagonal structure, and can be decomposed into one or more sub-problems (i.e. one sub-problem for each customer order) and a master problem by applying Dantzig-Wolfe’s decomposition principles. To efficiently solve the original MILP, an exact Branch-and-Price algorithm was successfully developed. Various approximation algorithms were developed to further improve the runtime. Experiments conducted unequivocally show the efficiency of these algorithms compared to a commercial optimization solver. The existing literature addresses the static order acceptance problem for a single machine environment having regular capacity with an objective to maximize profits and a penalty for tardiness. This dissertation has solved the order acceptance and capacity planning problem for a job shop environment with multiple resources. Both regular and overtime resources is considered. The Branch-and-Price algorithms developed in this dissertation are faster and can be incorporated in a decision support system which can be used on a daily basis to help make intelligent decisions in a MTO operation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Tara Oceans Expedition (2009-2013) sampled the world oceans on board a 36 m long schooner, collecting environmental data and organisms from viruses to planktonic metazoans for later analyses using modern sequencing and state-of-the-art imaging technologies. Tara Oceans Data are particularly suited to study the genetic, morphological and functional diversity of plankton. The present dataset contains navigation and meteorological data measured during one campaign of the Tara Oceans Expedition. Latitude and Longitude were obtained from TSG data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Tara Oceans Expedition (2009-2013) sampled the world oceans on board a 36 m long schooner, collecting environmental data and organisms from viruses to planktonic metazoans for later analyses using modern sequencing and state-of-the-art imaging technologies. Tara Oceans Data are particularly suited to study the genetic, morphological and functional diversity of plankton. The present dataset contains navigation and meteorological data measured during one campaign of the Tara Oceans Expedition. Latitude and Longitude were obtained from TSG data.