995 resultados para MOSSBAUER-SPECTROSCOPY
Resumo:
A series of new ruthenium-iron based derivatives [Ru(eta(5)-Cp)(dppf)Cl] (1), [Ru(eta(5)-Cp)(dppf)Br] (2), [Ru(eta(5)-Cp)(dppf)I] (3) and [Ru(eta(5)-Cp)(dppf)N(3)] (4) were obtained by reactions of [Ru(eta(5)-Cp)(PPh(3))(2)Cl] with 1,1`-bis(diphenylphosphino) ferrocene (dppf) and characterized by IR, NMR ((1)H, (13)C and (31)P), (57)Fe Mossbauer spectroscopy and cyclic voltammetry. Additionally, the compound (3) was structurally characterized by X-ray crystallography, and the results were as follows: orthorhombic, Pbca, a = 18.2458(10), b = 20.9192(11), c = 34.4138(19) a""<<, alpha = beta = gamma = 90A degrees, V = 13135.3(12) a""<<(3) and Z = 16.
Resumo:
Two coordination octahedral Sn(IV) complexes [Sn(L)(2)] and cis-[SnCl(2)(L)(dmso)], where H(2)L is 2-hydroxyacetophenone (S-benzydithiocarbazate), were prepared and characterized by elemental analysis, IR, NMR ((1)H, (13)C), (119)Sn Mossbauer spectroscopies and X-ray diffraction techniques to investigate their structural properties. Both crystallize in the Monoclinic system, with parameters: a = 8.1905(3), b = 30.8811(15), c = 12.8959(7) angstrom, beta = 94.465(3)degrees and Z = 4 for [Sn(L)(2)] and a = 8.5247(2), b = 21.5445(7), c = 12.3706(3) angstrom, beta = 96.932(2)degrees and Z = 4 for cis-[SnCl(2)(L)(dmso)]. In both complexes, the Sn(IV) central atom is coordinated in a distorted octahedral geometry with the thiolate ligand (L(2-)) coordinated via O, N and S atoms. The (119)Sn Mossbauer spectroscopy of the complexes were studied and the results revealed that both complexes posses isomer shift (delta) and quadrupole splitting (Delta), which are almost the same.
Resumo:
Magnetic fabric and rock magnetism studies were performed on 25 unmetamorphosed mafic dikes of the Meso-Late Proterozoic (similar to 1.02 Ga) dike swarm from Salvador (Bahia State, NE Brazil). This area lies in the north-eastern part of the Sao Francisco Craton, which was dominantly formed/reworked during the Transamazonian orogeny (2.14-1.94 Ga). The dikes crop out along the beaches and in quarries around Salvador city, and cut across both amphibolite dikes and granulites. Their widths range from a few centimeters up to 30 m with an average of similar to 4 m, and show two main trends N 140-190 and N 100-120 with vertical dips. Magnetic fabrics were determined using both anisotropy of low-field magnetic susceptibility (AMS) and anisotropy of anhysteretic remanent magnetization (AARM). The magnetic mineralogy was investigated by many experiments including remanent magnetization measurements at variable low temperatures (10-300 K), Mossbauer spectroscopy, high temperature magnetization curves (25-700 degrees C) and scanning electron microscopy (SEM). The rock magnetism study suggests pseudo-single-domain magnetite grains carrying the bulk magnetic susceptibility and AARM fabrics. The magnetite grains found in these dikes are large and we discard the presence of single-domain grains. Its composition is close to stoichiometric with low Ti substitution, and its Verwey transition occurs around 120 K. The main AMS fabric recognized in the swarm is so-called normal, in which the K(max)-K(int) plane is parallel to the dike plane and the magnetic foliation pole K(min)) is perpendicular to it. This fabric is interpreted as due to magma flow, and analysis of the K m inclination permitted to infer that approximately 80% of the dikes were fed by horizontal or sub-horizontal flows (K(max) < 30 degrees). This interpretation is supported by structural field evidence found in five dikes. In addition, based on the plunge of K(max), two mantle sources could be inferred; one of them which fed about 80% of the swarm would be located in the southern part of the region, and the other underlied the Valeria quarry. However, for all dikes the AARM tensors are not coaxial with AMS fabrics and show a magnetic lineation (AARM(max)) oriented to N30-60E, suggesting that magnetite grains were rotated clockwise from dike plane. The orientation of AARM lineation is similar to the orientation of a system of faults in which the Salvador normal fault is the most important. These faults were formed during Cretaceous rifting in the Reconcavo-Tucano-jatoba assemblage that corresponds to an aborted intra-continental rift formed during the opening of the South Atlantic. Therefore, the AARM fabric found for the Salvador dikes is probably tectonic in origin and suggests that the dike swarm was affected by the important tectonic event responsible for the break-up of the Gondwanaland. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Magnetic properties of acicular (similar to60 and similar to200 nm) iron particles, obtained by reduction of alumina-coated goethite particles, are reported. X-ray diffraction and Mossbauer spectroscopy showed that the particles consist of a alpha-Fe core and a thin surface layer of maghemite. Magnetization data indicated an improvement of similar to28% in the saturation magnetization, coercive field, and squareness for particles with similar to60 nm. This magnetic property enhancement of the present particles, whose size is 40% smaller than those commercially available, could result in a similar decrease of the bit-size for higher density of magnetic media.
Resumo:
Reactions of Hg(CH3COO)(2) with [Fe(CO)(5)] in MeOH and EtOH lead to the compounds Hg[Fe(COOR)(CO)(4)](2) (I for R = CH3 and II for R = C2H5). Crystals of I are triclinic, P (1) over bar, with a = 6.272(2), b = 6.441(3), c = 11.703(4) Angstrom, a = 92.94(3)degrees, beta = 103.77(3)degrees, gamma = 96.10(2)degrees, and Z = 1. Crystals of II are tetragonal, I4(1)/a, with a = 17.906(3) Angstrom, c = 12.756(2) Angstrom, and Z = 8. The geometry around Hg is linear for compound I and approximately linear for compound II. The Hg-Fe distances are 2.5716(8) and 2.575(4) Angstrom for compounds I and II, respectively. The geometry around the Fe in both compounds is approximately octahedral. The carboalkoxy group is cis to Hg in both compounds with Fe-C distances equal to 2.034(6) and 2.05(4) Angstrom for compounds I and II, respectively.
Resumo:
Samples of sintered AISI 316L stainless steel were plasma nitrided in a mixture of H-2-20% N-2, for 3 or 4 h. The treatment temperature was selected in 400-550 degreesC interval, in steps of 50 degreesC. X-ray diffraction (glancing angle geometry-GAXRD), conversion electron Mossbauer spectroscopy (CEMS), optical microscopy and Vickers microhardness were used as analytical techniques. For T greater than or equal to 500 degreesC and t = 4 h, a 40-mum layer is formed. The GAXRD results showed a transformation of the austenite gamma phase to the martensite in the sinterization process and showed as well, that the gamma' (Fe4N) phase is the predominant nitride besides small amounts of epsilon-Fe2N, gamma(N) CrN, Cr2O3 and the fcc nitrogen supersatured solid phase gamma(N). The CrN phase seems to decrease with temperature while the gamma(N) phase fraction is almost less than or equal to10%, independently on the temperature. The CEMS results indicated that while the gamma(N) fraction decreases with temperature of plasma nitriding, the gamma' fraction increases proportionally. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Acicular monodispersed Fe1-xREx (RE= Nd, Sm,Eu,Tb;x=0, 0.05, 0.10) metallic nanoparticles (60 +/- 5 nm in length and axial ratio similar to6) obtained by reduction of alumina-coated goethite nanoparticles-containing rare earth (RE) under hydrogen flow are reported. Alumina and maghemite thin layers on particle surface were used to protect the goethite particles against sintering and oxidation, respectively. Al and RE additions were obtained by successive heterocoagulation reactions. Aluminum sulfate (10 at.% based on Fe) was dissolved in water and the pH adjusted to 12.5 with NaOH solution. Goethite particles were suspended in this solution and CO2 gas was blown into the slurry to neutralize it to a pH 8.5 or less. Particles were purified and dehydrated to effect transformation to alumina-coated hematite nanoparticles, which were re-suspended in aqueous solution in which RE sulfate (0-0.15 at.% based on Fe) has been dissolved, and the pH increased by ammonia aqueous solution addition. Resulted alumina-coated RE-doped hematite nanoparticles were reduced to metal at 450 degreesC/12 h under hydrogen flow and passivated with nitrogen-containing ethanol vapor at room temperature. Acicular monodispersed metallic nanoparticle systems were obtained and the presence of Al and RE were confirmed by induced-coupled plasma spectrometry analysis. X-ray diffraction, Mossbauer spectroscopy, and magnetization data are in agreement with the nanosized alpha-Fe core in a bcc structure, having a spinel structure, gammaFe(2)O(3), with thickness similar to1.5 run on particle surface. Main magnetic parameters showed saturation magnetization decreases and significant increasing in the coercive field with the RE composition increases. Magnetic properties of these particles, similar to40% smaller than those commercially available, suggest a decrease in the bit-size for high-density magnetic or magneto-optics recording media application. (C) 2004 Published by Elsevier B.V.
Resumo:
The preparation of superparamagnetic magnetite (Fe(3)O(4)) nanoparticles by electro-precipitation in ethanol is proposed. Particle average size can be set from 4.4 to 9 nm with a standard deviation around 20%. Combination of wide-angle X-ray scattering (WAXS), Electron energy loss spectroscopy (EELS) and Mossbauer spectroscopy characterizations clearly identifies the particles as magnetite single-crystals (Fe(3)O(4)). (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Methionine sulfoxide complexes of iron(II) and copper(II) were synthesized and characterized by chemical and spectroscopic techniques. Elemental and atomic absorption analyses fit the compositions K2[Fe(metSO) 2]SO4 · H2O and [Cu(metSO)2] · H2O. Electronic absorption spectra of the complexes are typical of octahedral geometries. Infrared spectroscopy suggests coordination of the ligand to the metal through the carboxylate and sulfoxide groups. An EPR spectrum of the Cu(II) complex indicates tetragonal distortion of its octahedral symmetry. 57Fe Mössbauer parameters are also consistent with octahedral stereochemistry for the iron(II) complex. The complexes are very soluble in water.
Resumo:
Curcumin possesses wide-ranging anti-inflammatory and anti-cancer properties and its biological activity can be linked to its potent antioxidant capacity. Superparamagnetic maghemite (gamma-Fe2O3), called surface-active maghemite nanoparticles (SAMNs) were surface-modified with curcumin molecules, due to the presence of under-coordinated Fe-III atoms on the nanoparticle surface. The so-obtained curcumin-modified SAMNs (SAMN@curcumin) had a mean size of 13 +/- 4 nm. SAMN@curcumin was characterized by transmission and scanning electron microscopy, UV/Vis, FTIR, and Mossbauer spectroscopy, X-ray powder diffraction, bulk susceptibility (SQUID), and relaxometry measurements (MRI imaging). The high negative contrast proclivity of SAMN@curcumin to act as potential contrast agent in MRI screenings was also tested. Moreover, the redox properties of bound curcumin were probed by electrochemistry. SAMN@curcumin was studied in the presence of different electroactive molecules, namely hydroquinone, NADH and ferrocyanide, to assess its redox behavior. Finally, SAMN@curcumin was electrochemically probed in the presence of hydrogen peroxide, demonstrating the stability and reactivity of bound curcumin.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The monomeric compound bis[(carbonyl)(quinoline-2-thiolate-N,S)]iron(II) was synthesized and studied by IR and Mossbauer spectroscopy, cyclic voltammetry and X-ray diffraction. The molecule has two terminal carbonyl groups and two quinoline-2-thiolate anions coordinated as N,S-donor chelates, and the iron atom shows an octahedral coordination geometry.
Resumo:
Nanocomposites obtained from the polymerization of aniline in the presence of nanoparticles of magnetite (Fe3O4) have been investigated in previous studies. However, there is a lack of information available on the redox interaction of the nanoparticle/conductive polymer couple and the stability that such an oxide can give to the organic phase. In this work, Fe3O4 nanoparticles were incorporated into a PANi matrix by the in-situ oxidative polymerization method. A combination of X-ray diffraction, Mossbauer spectroscopy, transmission electronic microscopy, UV-visible spectroscopy as well as the cyclic voltammetric and Raman spectroscopy techniques, was used to understand the redox effect that the partially oxidized nanoparticles produced on the polymer. It was found that magnetite greatly stabilised PANi, mainly by enhancing the Leucoemeraldine/Emeraldine redox couple and also by reducing the bipolaronic state. (C) 2011 Elsevier B.V. All rights reserved.