970 resultados para MORPHOGENETIC PROTEIN-2 RHBMP-2


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hepatitis C virus (HCV) envelope protein 2 (E2) is involved in viral binding to host cells. The aim of this work was to produce recombinant E2B and E2Y HCV proteins in Escherichia coli and Pichia pastoris, respectively, and to study their interactions with low-density lipoprotein receptor (LDLr) and CD81 in human umbilical vein endothelial cells (HUVEC) and the ECV304 bladder carcinoma cell line. To investigate the effects of human LDL and differences in protein structure (glycosylated or not) on binding efficiency, the recombinant proteins were either associated or not associated with lipoproteins before being assayed. The immunoreactivity of the recombinant proteins was analysed using pooled serum samples that were either positive or negative for hepatitis C. The cells were immunophenotyped by LDLr and CD81 using flow cytometry. Binding and binding inhibition assays were performed in the presence of LDL, foetal bovine serum (FCS) and specific antibodies. The results revealed that binding was reduced in the absence of FCS, but that the addition of human LDL rescued and increased binding capacity. In HUVEC cells, the use of antibodies to block LDLr led to a significant reduction in the binding of E2B and E2Y. CD81 antibodies did not affect E2B and E2Y binding. In ECV304 cells, blocking LDLr and CD81 produced similar effects, but they were not as marked as those that were observed in HUVEC cells. In conclusion, recombinant HCV E2 is dependent on LDL for its ability to bind to LDLr in HUVEC and ECV304 cells. These findings are relevant because E2 acts to anchor HCV to host cells; therefore, high blood levels of LDL could enhance viral infectivity in chronic hepatitis C patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to evaluate an enzyme-linked immunoassay with recombinant rhoptry protein 2 (ELISA-rROP2) for its ability to detectToxoplasma gondii ROP2-specific IgG in samples from pregnant women. The study included 236 samples that were divided into groups according to serological screening profiles for toxoplasmosis: unexposed (n = 65), probable acute infection (n = 48), possible acute infection (n = 58) and exposed to the parasite (n = 65). When an indirect immunofluorescence assay forT. gondii-specific IgG was considered as a reference test, the ELISA-rROP2 had a sensitivity of 61.8%, specificity of 62.8%, predictive positive value of 76.6% and predictive negative value of 45.4% (p = 0.0002). The ELISA-rROP2 reacted with 62.5% of the samples from pregnant women with probable acute infection and 40% of the samples from pregnant women with previous exposure (p = 0.0180). Seropositivity was observed in 50/57 (87.7%) pregnant women with possible infection. The results underscored that T. gondii rROP2 is recognised by specific IgG antibodies in both the acute and chronic phases of toxoplasmosis acquired during pregnancy. However, the sensitivity of the ELISA-rROP2 was higher in the pregnant women with probable and possible acute infections and IgM reactivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Complex and variable morphological phenotypes pose a major challenge to the histopathological classification of neuroepithelial tumors. This applies in particular for low-grade gliomas and glio-neuronal tumors. Recently, we and others have identified microtubule-associated protein-2 (MAP2) as an immunohistochemical marker expressed in the majority of glial tumors. Characteristic cell morphologies can be recognized by MAP2 immunoreactivity in different glioma entities, i.e., process sparse oligodendroglial versus densely ramified astrocytic elements. Here, we describe MAP2-immunoreactivity patterns in a large series of various neuroepithelial tumors and related neoplasms (n = 960). Immunohistochemical analysis led to the following conclusions: (1) specific pattern of MAP2-positive tumor cells can be identified in 95% of glial neoplasms; (2) ependymal tumors do not express MAP2 in their rosette-forming cell component; (3) tumors of the pineal gland as well as malignant embryonic tumors are also characterized by abundant MAP2 immunoreactivity; (4) virtually no MAP2 expression can be observed in the neoplastic glial component of glio-neuronal tumors, i.e. gangliogliomas; (5) malignant glial tumor variants (WHO grade III or IV) exhibit different and less specific MAP2 staining patterns compared to their benign counterparts (WHO grade I or II); (6) with the exception of melanomas and small cell lung cancers, MAP2 expression is very rare in metastatic and non-neuroepithelial tumors; (7) glial MAP2 expression was not detected in 56 non-neoplastic lesions. These data point towards MAP2 as valuable diagnostic tool for pattern recognition and differential diagnosis of low-grade neuroepithelial tumors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Peripheral myelin protein 2 (Pmp2, P2 or Fabp8), a member of the fatty acid binding protein family, was originally described together with myelin basic protein (Mbp or P1) and myelin protein zero (Mpz or P0) as one of the most abundant myelin proteins in the peripheral nervous system (PNS). Although Pmp2 is predominantly expressed in myelinated Schwann cells, its role in glia is currently unknown. To study its function in PNS biology, we have generated a complete Pmp2 knockout mouse (Pmp2(-/-) ). Comprehensive characterization of Pmp2(-/-) mice revealed a temporary reduction in their motor nerve conduction velocity (MNCV). While this change was not accompanied by any defects in general myelin structure, we detected transitory alterations in the myelin lipid profile of Pmp2(-/-) mice. It was previously proposed that Pmp2 and Mbp have comparable functions in the PNS suggesting that the presence of Mbp can partially mask the Pmp2(-/-) phenotype. Indeed, we found that Mbp lacking Shi(-/-) mice, similar to Pmp2(-/-) animals, have preserved myelin structure and reduced MNCV, but this phenotype was not aggravated in Pmp2(-/-) /Shi(-/-) mutants indicating that Pmp2 and Mbp do not substitute each other's functions in the PNS. These data, together with our observation that Pmp2 binds and transports fatty acids to membranes, uncover a role for Pmp2 in lipid homeostasis of myelinating Schwann cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Selenoproteins contain the amino acid selenocysteine which is encoded by a UGA Sec codon. Recoding UGA Sec requires a complex mechanism, comprising the cis-acting SECIS RNA hairpin in the 3′UTR of selenoprotein mRNAs, and trans-acting factors. Among these, the SECIS Binding Protein 2 (SBP2) is central to the mechanism. SBP2 has been so far functionally characterized only in rats and humans. In this work, we report the characterization of the Drosophila melanogaster SBP2 (dSBP2). Despite its shorter length, it retained the same selenoprotein synthesis-promoting capabilities as the mammalian counterpart. However, a major difference resides in the SECIS recognition pattern: while human SBP2 (hSBP2) binds the distinct form 1 and 2 SECIS RNAs with similar affinities, dSBP2 exhibits high affinity toward form 2 only. In addition, we report the identification of a K (lysine)-rich domain in all SBP2s, essential for SECIS and 60S ribosomal subunit binding, differing from the well-characterized L7Ae RNA-binding domain. Swapping only five amino acids between dSBP2 and hSBP2 in the K-rich domain conferred reversed SECIS-binding properties to the proteins, thus unveiling an important sequence for form 1 binding.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bone morphogenetic protein (BMP)-2 and transforming growth factor (TGF)-beta1 are multifunctional cytokines both proposed as stimulants for cartilage repair. Thus it is crucial to closely examine and compare their effects on the expression of key markers of the chondrocyte phenotype, at the gene and protein level. In this study, the expression of alpha 10 and alpha 11 integrin subunits and the IIA/IIB spliced forms of type II procollagen have been monitored for the first time in parallel in the same in vitro model of mouse chondrocyte dedifferentiation/redifferentiation. We demonstrated that TGF-beta1 stimulates the expression of the non-chondrogenic form of type II procollagen, IIA isoform, and of a marker of mesenchymal tissues, i.e. the alpha 11 integrin subunit. On the contrary, BMP-2 stimulates the cartilage-specific form of type II procollagen, IIB isoform, and a specific marker of chondrocytes, i.e. the alpha 10 integrin subunit. Collectively, our results demonstrate that BMP-2 has a better capability than TGF-beta1 to stimulate chondrocyte redifferentiation and reveal that the relative expressions of type IIB to type IIA procollagens and alpha 10 to alpha 11 integrin subunits are good markers to define the differentiation state of chondrocytes. In addition, adenoviral expression of Smad6, an inhibitor of BMP canonical Smad signaling, did not affect expression of total type II procollagen or the ratio of type IIA and type IIB isoforms in mouse chondrocytes exposed to BMP-2. This result strongly suggests that signaling pathways other than Smad proteins are involved in the effect of BMP-2 on type II procollagen expression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

cAMP response element binding protein-2 (CREB-2) is a basic leucine zipper (bZIP) factor that was originally described as a repressor of CRE-dependent transcription but that can also act as a transcriptional activator. Moreover, CREB-2 is able to function in association with the viral Tax protein as an activator of the human T-cell leukemia virus type I (HTLV-I) promoter. Here we show that CREB-2 is able to interact with C/EBP-homologous protein (CHOP), a bZIP transcription factor known to inhibit CAAT/enhancer-dependent transcription. Cotransfection of CHOP with CREB-2 results in decreased activation driven by the cellular CRE motif or the HTLV-I proximal Tax-responsive element, confirming that CREB-2 and CHOP can interact with each other in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Guanylate cyclase activating proteins are EF-hand containing proteins that confer calcium sensitivity to retinal guanylate cyclase at the outer segment discs of photoreceptor cells. By making the rate of cGMP synthesis dependent on the free intracellular calcium levels set by illumination, GCAPs play a fundamental role in the recovery of the light response and light adaptation. The main isoforms GCAP1 and GCAP2 also localize to the synaptic terminal, where their function is not known. Based on the reported interaction of GCAP2 with Ribeye, the major component of synaptic ribbons, it was proposed that GCAP2 could mediate the synaptic ribbon dynamic changes that happen in response to light. We here present a thorough ultrastructural analysis of rod synaptic terminals in loss-of-function (GCAP1/GCAP2 double knockout) and gain-of-function (transgenic overexpression) mouse models of GCAP2. Rod synaptic ribbons in GCAPs−/− mice did not differ from wildtype ribbons when mice were raised in constant darkness, indicating that GCAPs are not required for ribbon early assembly or maturation. Transgenic overexpression of GCAP2 in rods led to a shortening of synaptic ribbons, and to a higher than normal percentage of club-shaped and spherical ribbon morphologies. Restoration of GCAP2 expression in the GCAPs−/− background (GCAP2 expression in the absence of endogenous GCAP1) had the striking result of shortening ribbon length to a much higher degree than overexpression of GCAP2 in the wildtype background, as well as reducing the thickness of the outer plexiform layer without affecting the number of rod photoreceptor cells. These results indicate that preservation of the GCAP1 to GCAP2 relative levels is relevant for maintaining the integrity of the synaptic terminal. Our demonstration of GCAP2 immunolocalization at synaptic ribbons at the ultrastructural level would support a role of GCAPs at mediating the effect of light on morphological remodeling changes of synaptic ribbons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tissue transglutaminase (type II, TG2) has long been postulated to directly promote skeletal matrix calcification and play an important role in ossification. However, limited information is available on the expression, function and modulating mechanism of TG2 during osteoblast differentiation and mineralization. To address these issues, we cultured the well-established human osteosarcoma cell line SAOS-2 with osteo-inductive conditioned medium and set up three time points (culture days 4, 7, and 14) to represent different stages of SAOS-2 differentiation. Osteoblast markers, mineralization, as well as TG2 expression and activity, were then assayed in each stage. Furthermore, we inhibited TG activity with cystamine and then checked SAOS-2 differentiation and mineralization in each stage. The results showed that during the progression of osteoblast differentiation SAOS-2 cells presented significantly high levels of osteocalcin (OC) mRNA, bone morphogenetic protein-2 (BMP-2) and collagen I, significantly high alkaline phosphatase (ALP) activity, and the increased formation of calcified matrix. With the same tendency, TG2 expression and activity were up-regulated. Furthermore, inhibition of TG activity resulted in a significant decrease of OC, collagen I, and BMP-2 mRNA and of ALP activity and mineralization. This study demonstrated that TG2 is involved in osteoblast differentiation and may play a role in the initiation and regulation of the mineralization processes. Moreover, the modulating effects of TG2 on osteoblasts may be related to BMP-2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Liver cirrhosis is one of the most common diseases of Chinese patients. Herein, we report the high expression of a newly identified histone 3 lysine 4 demethylase, retinoblastoma binding protein 2 (RBP2), and its role in liver cirrhosis in humans. The siRNA knockdown of RBP2 expression in hepatic stellate cells (HSCs) reduced levels of α-smooth muscle actin (α-SMA) and vimentin and decreased the proliferation of HSCs; and overexpression of RBP2 increased α-SMA and vimentin levels. Treatment with transforming growth factor β (TGF-β) upregulated the expression of RBP2, α-SMA, and vimentin, and the siRNA knockdown of RBP2 expression attenuated TGF-β-mediated upregulation of α-SMA and vimentin expression and HSC proliferation. Furthermore, RBP2 was highly expressed in cirrhotic rat livers. Therefore, RBP2 may participate in the pathogenesis of liver cirrhosis by regulating the expression of α-SMA and vimentin. RBP2 may be a useful marker for the diagnosis and treatment of liver cirrhosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A previous study showed that BMP-2 (bone morphogenetic protein-2) and wear debris can separately support osteoclast formation induced by the receptor activator of NF-κB ligand (RANKL). However, the effect of BMP-2 on wear debris-induced osteoclast formation is unclear. In this study, we show that neither titanium particles nor BMP-2 can induce osteoclast formation in RAW 264.7 mouse leukemic monocyte macrophage cells but that BMP-2 synergizes with titanium particles to enhance osteoclast formation in the presence of RANKL, and that at a low concentration, BMP-2 has an optimal effect to stimulate the size and number of multinuclear osteoclasts, expression of osteoclast genes, and resorption area. Our data also clarify that the effects caused by the increase in BMP-2 on phosphorylated SMAD levels such as c-Fos expression increased throughout the early stages of osteoclastogenesis. BMP-2 and titanium particles stimulate the expression of p-JNK, p-P38, p-IkB, and P50 compared with the titanium group. These data suggested that BMP-2 may be a crucial factor in titanium particle-mediated osteoclast formation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bone morphogenetic protein-2 (BMP-2) has the ability to induce osteoblast differentiation of undifferentiated cells, resulting in the healing of skeletal defects when delivered with a suitable carrier. We have applied a versatile delivery platform comprising a novel composite of two biomaterials with proven track records – apatite and poly(lactic-co-glycolic acid) (PLGA) – to the delivery of BMP-2. Sustained release of this growth factor was tuned with variables that affect polymer degradation and/or apatite dissolution, such as polymer molecular weight, polymer composition, apatite loading, and apatite particle size. The effect of released BMP-2 on C3H10T1/2 murine pluripotent mesenchymal cells was assessed by tracking the expression of osteoblastic makers, alkaline phosphatase (ALP) and osteocalcin. Release media collected over 100 days induced elevated ALP activity in C3H10T1/2 cells. The expression of osteocalcin was also upregulated significantly. These results demonstrated the potential of apatite-PLGA composite particles for releasing protein in bioactive form over extended periods of time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bone morphogenetic proteins (BMPs) and their receptors are expressed in ovarian theca cells (TC) and granulosa cells (GC) and BMPs have been implicated in the regulation of several aspects of follicle development including thecal androgen production and granulosal oestrogen production. Their potential involvement in luteal function has received less attention. in this study, we first compared relative abundance of mRNA transcripts for BMPs, activin-beta A and BMP/activin receptors in bovine corpus luteum (CL) and follicular theca and granulosa layers before undertaking functional in vitro experiments to test the effect of selected ligands (BMP6 and activin A) on luteinizing bovine TC and GC. Relative to P-actin transcript abundance, CL tissue contained more BMP4 and -6 mRNA than granulosa, more BMP2 mRNA than theca but much less activin-beta A mRNA than both granulosa and theca. Transcripts for all seven BMP/activin receptors were readily detected in each tissue and two transcripts (BMPRII, ActRIIA) were more abundant in CL than either theca or granulosa, consistent with tissue responsiveness. In vitro luteinization of TC and GC from antral follicles (4-6 mm) was achieved by culturing with 5% serum for 6 days. Treatment with BMP6 (0, 2, 10, and 50 ng/ml) and activin A (0, 2, 10 and 50 ng/ml) under these conditions dose-dependently suppressed forskolin-induced progesterone (P-4) secretion from both cell types without affecting cell number. BMP6 reduced forskolin-stimulated upregulation of STAR mRNA and raised 'basal' CYP17A1 mRNA level in theca-lutein cells without affecting expression of CYP11A1 or hydroxy-Delta-5-steroid dehydrogenase, 3 beta- and steroid Delta-isomerase 1 (HSD3B1). In granulosa-lutein cells, STAR transcript abundance was not affected by BMP6, whereas forskolin-induced expression of CYP11A1, HSD3B1, CYP19A1 and oxytocin transcripts was reduced. In both cell types, follistatin attenuated the suppressive effect of activin A and BMP6 on forskolin-induced P4 secretion but had no effect alone. Granulosa-lutein cells secreted low levels of endogenous activin A (similar to 1 ng/ml); BMP6 reduced this, while raising follistatin secretion thus decreasing activin A:follistatin ratio. Collectively, these findings support inhibitory roles for BMP/activin signalling in luteinization and steroidogenesis in both TC and GC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aims were to examine ovarian expression of bone morphogenetic protein (BMP) ligands/receptor mRNAs in the chicken and to test the hypothesis that theca-derived BMP(s) modulates granulosa cell function in a paracrine manner. RT-PCR revealed expression of multiple BMPs in granulosa and theca cells from prehierarchical and preovulatory follicles with greater expression in theca cells; both cell types expressed BMP receptors-1A, -1B and -II consistent with tissue responsiveness. Preovulatory granulosa cells F1, F2 and F3/4) were cultured with BMP-6 (expressed by theca but not granulosa) in the presence/absence of LH, FSH or 8-Br-cAMP. RMP-6 increased 'basal' and gonadotrophin-induced inhibin-A and progesterone secretion by each cell type but did not enhance the effect of 8-Br-cAMP. This indicates that the observed synergism between BMP-6 and gonadotrophin might involve BMP-induced up-regulation of gonadotrophin receptors. In support of this, BMP-6 alone increased LH-receptor (LHR) mRNA in F1 cells and FSH-receptor (FSHR) mRNA in F1, F2 and F3/4 cells. RMP-6 also enhanced LH/FSH-induced LHR transcript amount in each cell type but did not raise FSHR transcript amounts above those induced by BMP-6 alone. To further explore BMP6 action on inhibin-A secretion, we quantified inhibin/activin subunits (alpha, beta(A), beta(B)) mRNAs. Consistent with its effect on inhibin-A secretion, BMP-6 enhanced 'basal' expression of alpha- and beta(A)-Subunit mRNA in F1, F2 and F3/4 cells, and beta(B)-subunit mRNA in F3/4 cells. BMP-6 markedly enhanced FSH/LH-induced expression of alpha-subunit in all follicles and FSH-induced beta(A)-subunit in F2 and F3/4 follicles but not in F1 follicles. Neither BMP-6 alone, nor FSH/LH alone, affected 'basal' OB mRNA abundance. However, co-treatment with gonadotrophin and BMP-6 greatly increased beta(B)-subunit expression, the response being lowest in F1 follicles and greatest in F3/4 follicles. Collectively, these results support the hypothesis that intra-ovarian OMPs of thecal origin have a paracrine role in modulating granulosa cell function in the chicken in a preovulatory stage-dependent manner.