840 resultados para MONOCYTES
Resumo:
Human monocytes lacked fungicidal activity against high virulence strain of Paracoccidioides brasiliensis, even after IFN-gamma activation. However, monocytes treated with indomethacin exhibited an effective killing against this fungus, suggesting a role of prostaglandin E-2 (PGE(2)) in the inhibition process. Thus, the purpose of this work was to determine whether the effect of PGE2 in fungicidal activity was related with decrease on H2O2 release, the metabolite involved in P. brasiliensis killing, and changes in the levels of TNF-alpha, IL-6 and IL-10. Human monocytes challenged with the fungus produced high PGE(2) levels, which in turn inhibited the fungicidal activity of these cells by reducing H2O2 and TNF-alpha production. (C) 2007 Elsevier Masson SAS. All rights reserved.
Resumo:
The interaction of human monocytes or monocyte-derived macrophages and yeast-form Paracoccidioides brasiliensis was studied in vitro. Yeast cells were readily ingested by adherent monocytes or macrophages. Multiplication of P. brasiliensis, measured by growth as colony forming units (cfu) on a supplemented medium with good plating efficiency, was greater in monocyte co-cultures compared to the number of cfu obtained from complete tissue-culture medium (CTCM). Multiplication increased with time in macrophage cocultures, e.g., from two-six-fold in 24 h to nine-fold in 72 h. Microscopic observations indicated that ingested yeast cells multiplied inside macrophages. When monocytes were treated with supernate cytokines (CK) from concanavalin-A-stimulated mononuclear cells, then co-cultured with P. brasiliensis, multiplication was significantly inhibited compared with control monocyte co-cultures. Treatment of macrophages-derived from monocytes by culture in vitro for 3 days-for a further 3 days with CK resulted in maximal inhibition of multiplication over the subsequent 72 h. Similarly, when monocyte-derived macrophages (after culture for 7 days) were treated for 3 days with recombinant human gamma-interferon (IFN; 300 U/ml) or CK they restricted multiplication of P. brasiliensis by 65% and 95%, respectively, compared with control macrophages, Antibody to IFN abrogated the effect of IFN or CK treatment. These findings show that ingested P. brasiliensis can multiply in human monocytes or macrophages and that this multiplication can be restricted by activated monocytes or macrophages.
Resumo:
The polysaccharide fraction of Paracoccidioides brasiliensis mycelial cell wall (F1 fraction), the active component of which is composed of beta-glucan, was investigated in regard to the activation of human monocytes for fungal killing. The cells were primed with interferon-gamma (IFN-gamma) or F1 (100 and 200 mug ml(-1)) or F1 (100 and 200 mug ml(-1)) plus IFN-gamma for 24 h and then evaluated for H2O2 release. In other experiments, the cells were pretreated with the same stimuli, challenged with a virulent strain of P. brasiliensis and evaluated for fungicidal activity and levels of tumor necrosis factor (TNF-alpha) in the supernatants. F1 increased the levels of H2O2 in a similar manner to IFN-gamma. However, a synergistic effect between these two activators was not detected. on the contrary, a significant fungicidal activity was only obtained after priming with IFN-gamma plus F1. This higher activity was associated with high levels of TNF-alpha in the supernatants of the cocultures. Overall, P. brasiliensis F1 fraction induced human monocytes to release relatively high levels of TNF-alpha, which, in combination with IFN-gamma, is responsible for the activation of human monocytes for effective killing of P. brasiliensis.
Resumo:
Peripheral blood monocytes obtained from paracoccidioidomycosis patients and healthy individuals were preactivated with recombinant gamma interferon (IFN-gamma) in different concentrations (250, 500 and 1000 U/ml) and evaluated for fungicidal activity against Paracoccidiodes brasiliensis strain 18 (Pb 18, high-virulence strain) and strain 265 (Pb 265, low-virulence strain) by plating of cocultures and counting of colony-forming units, after 10 d. Monocytes from healthy individuals failed to present fungicidal activity against P. brasiliensis even after IFN-gamma activation at the three concentrations. However, patient, monocytes activated with IFN-gamma (1 000 U/ml) showed a significant fungicidal activity when compared to that obtained with non-activated or activated cells with other IFN-gamma concentrations (250 and 500 U/ml). Moreover,,patient monocytes presented higher fungicidal activity than the control, even before the activation process. These results may be explained by the activation state of patients' cells as a function of the in vivo contact with the fungus, which was confirmed by their higher capacity to release H2O2 in vitro. Unlike the results obtained with Ph 18, patient and control cells presented a significant fungicidal activity against Pb 265, after priming with IFN-gamma. These results are explained by the higher levels of TNF-alpha in supernatants of cultures challenged with Pb 265. Moreover, higher levels of the cytokine were obtained in patient cell supernatants. Taken together, our results suggest that for effective killing of P. brasiliensis by monocytes, an initial activation signal induced by IFN-gamma is necessary to stimulate the cells to produce TNF-alpha. This cytokine may be involved, through an autocrine pathway, in the final phase activation process. The effectiveness of this process seems to depend on the virulence of the fungal strain and the activation state of the challenged cells. (C) 2003 Editions scientifiques et medicales Elsevier SAS. All fights reserved.
Resumo:
Patients with paracoccidioidomycosis (PCM) present marked involvement of the lungs during the course of the mycosis. The purpose of this work was to obtain bronchoalveolar lavage (BAL) fluid from these patients to study the cytopathology, TNF levels and the oxidative and fungicidal response of alveolar macrophages (AMs) to in vitro incubation with recombinant IFN-gamma. To compare the lung and blood compartments, these determinations were also made in plasma and blood monocytes (BMs) obtained from the same patients. The cytopathology of BAL fluid revealed a predominance of macrophages, but with the presence of neurrophil exudation, and rare lymphocytes and epithelioid and giant cells. Comparison of the oxidative status and fungicidal activity of AMs and circulating BMs demonstrated that both cell types are highly activated for these two functions when compared to control cells. However, TNF levels were higher in BAL fluid than in plasma. The possible mechanisms involved in the hyperresponsiveness of cells from PCM patients are discussed. (C) 2003 Editions scientifiques et medicales Elsevier SAS. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The mechanisms used by Paracoccidioides brasiliensis to survive into phagocytic cells are not clear. Cellular iron metabolism is of critical importance to the growth of several intracellular pathogens whose capacity to multiply in mononuclear phagocytes is dependent on the availability of intracellular iron. Thus, the objective of this paper was to investigate the role of intracellular iron in regulating the capacity of P. brasiliensis yeast cells to survive within human monocytes. Treatment of monocytes with deferoxamine, an iron chelator, suppressed the survival of yeasts in a concentration-dependent manner. The effect of deferoxamine was reversed by iron-saturated transferrin (holotransferrin) but not by nonsaturated transferrin (apotransferrin). These results strongly suggest that P. brasiliensis survival in human monocytes is iron dependent.
Resumo:
Human monocytes lack fungicidal activity against high virulent strains of Paracoccidioides brasiliensis, the etiological agent of paracoccidioidomycosis, even after IFN-γ activation. However, monocytes treated with indomethacin (INDO) or INDO plus IFN-γ effectively killed this fungus, suggesting an inhibitory role of prostaglandins in this process. Thus, the purpose of this work was to test if this regulatory effect of prostaglandin was associated with alterations on H2O2 production and/or on modulatory cytokines levels, such as TNF-α, IL-10, and IL-6. Peripheral blood monocytes obtained from 10 healthy donors were incubated for 18 hours in the presence or absence of IFN-γ, INDO, or IFN-γ plus INDO, and further challenged with a high virulent strain of P. brasiliensis (Pb18) for 4 hours. Then, the monocytes cultures were evaluated for H2O2 release and fungicidal activity calculated by counting the colony forming units after plating. Moreover, on supernatants of the same cultures, TNF-α, IL-10, IL-6, and PGE2 concentrations were evaluated by ELISA. Monocytes treated with INDO or INDO plus IFN-γ presented higher fungicidal activity associated with the release of higher levels of H2O2 and TNF-α, but lesser levels of PGE2, when compared to nontreated cells. However, the levels of IL-10 and IL-6 were similar between treated and nontreated cells. The results suggest that human monocytes when challenged with high virulent strains of P. brasiliensis produce prostaglandins that inhibit the fungicidal activity of these cells by reducing H2O2 and TNF-α levels.
Resumo:
The mechanisms used by Paracoccidioides brasiliensis (Pb 18) to survive into monocytes are not clear. Cellular iron metabolism is of critical importance to the growth of several intracellular pathogens, including P. brasiliensis, whose capacity to multiply in mononuclear phagocytes is dependent on the availability of intracellular iron. Chloroquine, by virtue of its basic properties, has been shown to prevent release of iron from holotransferrin by raising endocytic and lysosomal pH, and thereby interfering with normal iron metabolism. Then, in view of this, we have studied the effects of CHLOR on P. brasiliensis multiplication in human monocytes and its effect on the murine paracoccidioidomycosis. CHLOR induced human monocytes to kill P. brasiliensis. The effect of CHLOR was reversed by FeNTA, an iron compound that is soluble at neutral to alkaline pH, but not by holotransferrin, which releases iron only in an acidic environment. CHLOR treatment of Pb 18-infected BALB/c mice significantly reduced the viable fungi recovery from lungs, during three different periods of evaluation, in a dose-dependent manner. This study demonstrates that iron is of critical importance to the survival of P. brasiliensis yeasts within human monocytes and the CHLOR treatment in vitro induces Pb 18 yeast-killing by monocytes by restricting the availability of intracellular iron. Besides, the CHLOR treatment in vivo significantly reduces the number of organisms in the lungs of Pb-infected mice protecting them from several infections. Thus, CHLOR was effective in the treatment of murine paracoccidioidomycosis, suggesting the potential use of this drug in patients' treatment.
Resumo:
Monocytes and macrophages play a central role in innate and adaptive immune response against systemic fungal infections. Imbalances in suppressor or stimulatory cytokine secretion caused by these cells may influence disease development, microorganism death, and the nature of the adaptive immune response. This study analyzed the monocyte cytokine profiles of healthy individuals challenged with high and low virulent strains of P. brasiliensis and mRNA cytokine expression kinetics by reverse transcription polymerase chain reaction (RT-PCR). Peripheral blood monocytes from healthy volunteers were cultured in vitro with and without virulent (Pb18) or low virulence (Pb265) strains from P. brasiliensis viable yeast cells. Interleukin-1 beta (IL-1β), IL-6, IL-8, IL-10, tumor necrosis factor-alpha (TNF-α), and transforming growth factor-beta (TGF-β1) were measured in culture supernatants by enzyme immunoassay (ELISA), and mRNA cytokine expression was determined by RT-PCR at 0, 4, 8, 12, 18 and 48 hr. Both P. brasiliensis strains induced monocyte production of IL-1β, IL-6, IL-10 and TNF-α. Pb18 induced higher levels of IL-1β, IL-6, and IL-10 than Pb265. IL-8 and TGF-β1 levels were not significantly different from those cultured without stimulus. The mRNA cytokine expression was similar to supernatant cytokines measured by ELISA. In vitro monocyte challenge with virulent P. brasiliensis strain induces earlier and higher levels of pro- and anti-inflammatory cytokines than low virulence strain.