998 resultados para MOLECULAR ENVIRONMENTS
Resumo:
The intestinal protozoan parasite Giardia duodenalis (syn. Giardia intestinalis and Giardia lamblia) is a widespread enteric pathogen in human and domestic animals. This organism is one of the most common parasites in domestic dogs in Brazil. In this study, we determined the occurrence and genetic characterization of G. duodenalis isolated from dogs from south-central São Paulo state, Brazil. A total of 300 fecal samples were collected. Fecal specimens were screened for the presence of G. duodenalis using microscopy (zinc sulfate solution flotation technique) and polymerase chain reaction (PCR) targeting the small subunit ribosomal (SSU-rDNA) and glutamate dehydrogenase (GDH) genes. Genetic characterization was performed using restriction fragment length polymorphisms (RFLP) and sequencing analysis of the GDH gene. In addition, selected samples were further characterized by RFLP and sequencing of the beta-giardin gene. The overall occurrence of G. duodenalis was 17.3% (52/300). The occurrence was higher in stray dogs (28%) than in household dogs (6.25%). of the 36 PCR-positive samples that were selected for genotyping, only dog-specific genotype C (20 isolates), D (11 isolates) and mixed C+D (five isolates) isolates were detected in the study. This study provides current information on the infection rates of G. duodenalis genotypes in canine populations and describes for the first time the presence of mixed infections within host-specific C and D genotypes in dogs in Brazil. These genotypes were widespread and commonly found in domestic dogs living in urban and suburban environments of the studied area and confirmed the endemic status of Giardia in this region.
Resumo:
The modern approach to the development of new chemical entities against complex diseases, especially the neglected endemic diseases such as tuberculosis and malaria, is based on the use of defined molecular targets. Among the advantages, this approach allows (i) the search and identification of lead compounds with defined molecular mechanisms against a defined target (e.g. enzymes from defined pathways), (ii) the analysis of a great number of compounds with a favorable cost/benefit ratio, (iii) the development even in the initial stages of compounds with selective toxicity (the fundamental principle of chemotherapy), (iv) the evaluation of plant extracts as well as of pure substances. The current use of such technology, unfortunately, is concentrated in developed countries, especially in the big pharma. This fact contributes in a significant way to hamper the development of innovative new compounds to treat neglected diseases. The large biodiversity within the territory of Brazil puts the country in a strategic position to develop the rational and sustained exploration of new metabolites of therapeutic value. The extension of the country covers a wide range of climates, soil types, and altitudes, providing a unique set of selective pressures for the adaptation of plant life in these scenarios. Chemical diversity is also driven by these forces, in an attempt to best fit the plant communities to the particular abiotic stresses, fauna, and microbes that co-exist with them. Certain areas of vegetation (Amazonian Forest, Atlantic Forest, Araucaria Forest, Cerrado-Brazilian Savanna, and Caatinga) are rich in species and types of environments to be used to search for natural compounds active against tuberculosis, malaria, and chronic-degenerative diseases. The present review describes some strategies to search for natural compounds, whose choice can be based on ethnobotanical and chemotaxonomical studies, and screen for their ability to bind to immobilized drug targets and to inhibit their activities. Molecular cloning, gene knockout, protein expression and purification, N-terminal sequencing, and mass spectrometry are the methods of choice to provide homogeneous drug targets for immobilization by optimized chemical reactions. Plant extract preparations, fractionation of promising plant extracts, propagation protocols and definition of in planta studies to maximize product yield of plant species producing active compounds have to be performed to provide a continuing supply of bioactive materials. Chemical characterization of natural compounds, determination of mode of action by kinetics and other spectroscopic methods (MS, X-ray, NMR), as well as in vitro and in vivo biological assays, chemical derivatization, and structure-activity relationships have to be carried out to provide a thorough knowledge on which to base the search for natural compounds or their derivatives with biological activity.
Resumo:
Cytogenetic and random amplified polymorphic DNA analyses carried out in the species Leptodactylus podicipinus, L. ocellatus, L. labyrinthicus, and L. fuscus from rural and urban habitats of the northwest region of São Paulo State, Brazil, showed that the karyotypes (2n = 22), constitutive heterochromatin distribution and nucleolus organizer region (NOR) location did not differ between the populations from the two environments. The in situ hybridization with an rDNA probe confirmed the location of the NORs on chromosome 8 revealing an in tandem duplication of that region in one of the chromosomes of L. fuscus. DAPI showed that part of the C-band-positive heterochromatin is rich in AT, including that in the proximity the NORs in L. podicipinus and L. ocellatus. The molecular analyses showed that the two populations (urban and rural) of L. podicipinus and L. fuscus are similar from a genetic point of view. The urban and rural populations of species L. ocellatus and L. labyrinthicus showed differences in genetic structures, probably due to urbanization which interferes with the dispersion of those frogs. The marked differences observed between the two populations of L. ocellatus can be representing the cryptic condition of the species. Unweighted pair-group method of analysis and genetic distance analysis detected the genetic proximity between L. ocellatus and L. fuscus. The results indicate that there was no reduction in the genetic diversity in the populations from the urban environment; however, the survival of these frogs would not be guaranteed in the case of an increase in human impact especially for populations of L. labyrinthicus and L. ocellatus. ©FUNPEC-RP.
Resumo:
We study the non-Markovianity of the dynamics of open quantum systems, focusing on the cases of independent and common environmental interactions. We investigate the degree of non-Markovianity quantified by two distinct measures proposed by Luo, Fu, and Song and Breuer, Laine, and Pillo. We show that the amount of non-Markovianity, for a single qubit and a pair of qubits, depends on the quantum process, the proposed measure, and whether the environmental interaction is collective or independent. In particular, we demonstrate that while the degree of non-Markovianity generally increases with the number of qubits in the system for independent environments, the same behavior is not always observed for common environments. In the latter case, our analysis suggests that the amount of non-Markovianity could increase or decrease depending on the properties of the considered quantum process. © 2013 American Physical Society.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Multidisciplinary benthic studies are still hindered by the lack of a unique fixative that satisfactorily preserves morphology and DNA, and that is simultaneously adequate for ecological surveys. The objective of this study is to test the performance of five fixatives: formalin, ethanol, dimethylsulfoxide with EDTA and NaCl salts (DESS), methanol with acetic acid (METHAC), and ethanol with acetic acid (ETHAC), for the preservation of estuarine and exclusively marine nematode assemblages for morphological, molecular, and ecological studies. The presence of the stain rose bengal in each fixative was also evaluated in the yield of PCR reactions. For molecular analyses, one species of each habitat was considered. Results revealed that fixative performance for morphological studies is habitat-and species-dependent. For studies of estuarine sediment nematodes, we recommend the use of pure ethanol, because it caused little morphological distortion (<10% of the assemblage), preserved all the species for ecological studies, and yielded high quality DNA sequences. For studies of exclusively marine environments, METHAC or DESS are the most adequate. The first performed better for morphological and ecological surveys, whereas the second was more appropriate for molecular research. For ecological studies, DESS should be used in comparison with formalin, in order to cross check the results. Finally, staining of samples with rose bengal is not recommended, because it hindered DNA amplification regardless of the fixative used.
Resumo:
Sphaerospermopsis torques-reginae (Komarek) Werner, Laughinghouse IV, Fiore & Sant'Anna comb. nov. was originally described as Anabaena torques-reginae Komarek from planktonic populations of Cuban eutrophic environments, characterized by twisted trichomes with spherical akinetes adjacent to the heterocytes. Recently, using molecular analyses, all planktonic Anabaena Bory ex Bornet & Flahault morphospecies were transferred into the genus Dolichospermum (Ralfs ex Bornet & Flahault) Wacklin el al., including Dolichospermum torques-reginae (Komarek) Wacklin et al. However, by a polyphasic characterization of strains of Anabaena reniformis Lemmermann and Aphanizomenon aphanizomenoides (Forti) Horecka & Komarek (=Anabaena aphanizomenoides Forti), these planktonic species were reclassified into Sphaerospermopsis Zapomelova et al. Our study's main objective was to characterize morphologically and molecularly cyanobacterial populations identified as Dolichospermum torques-reginae, observed in different aquatic ecosystems in South America. The 16S rRNA gene of two Dolichospermum torques-reginae strains (ITEP-024 and ITEP-026) was sequenced and phylogenetically analyzed for the first time. The morphological and phylogenetic analyses demonstrated the affiliation of the studied populations with the genus Sphaerospermopsis and, consequently, were denominated as Sphaerospermopsis torques-reginae. Furthermore, geographic distribution, ecology, and toxicity of the species are discussed. It was observed in different aquatic environments, natural and artificial, tropical and subtropical in Brazil, temperate in Argentina, and tropical in Colombia, suggesting a wide distribution in South America. It normally occurred in dense freshwater blooms, although it was also found in water with low salinity. Sphaerospermopsis torques-reginae toxic blooms have been reported in tropical water bodies in northeastern Brazil.
Resumo:
The central aim of this thesis work is the application and further development of a hybrid quantum mechanical/molecular mechanics (QM/MM) based approach to compute spectroscopic properties of molecules in complex chemical environments from electronic structure theory. In the framework of this thesis, an existing density functional theory implementation of the QM/MM approach is first used to calculate the nuclear magnetic resonance (NMR) solvent shifts of an adenine molecule in aqueous solution. The findings show that the aqueous solvation with its strongly fluctuating hydrogen bond network leads to specific changes in the NMR resonance lines. Besides the absolute values, also the ordering of the NMR lines changes under the influence of the solvating water molecules. Without the QM/MM scheme, a quantum chemical calculation could have led to an incorrect assignment of these lines. The second part of this thesis describes a methodological improvement of the QM/MM method that is designed for cases in which a covalent chemical bond crosses the QM/MM boundary. The development consists in an automatized protocol to optimize a so-called capping potential that saturates the electronic subsystem in the QM region. The optimization scheme is capable of tuning the parameters in such a way that the deviations of the electronic orbitals between the regular and the truncated (and "capped") molecule are minimized. This in turn results in a considerable improvement of the structural and spectroscopic parameters when computed with the new optimized capping potential within the QM/MM technique. This optimization scheme is applied and benchmarked on the example of truncated carbon-carbon bonds in a set of small test molecules. It turns out that the optimized capping potentials yield an excellent agreement of NMR chemical shifts and protonation energies with respect to the corresponding full molecules. These results are very promising, so that the application to larger biological complexes will significantly improve the reliability of the prediction of the related spectroscopic properties.
Resumo:
In der vorliegenden Arbeit werden Experimente beschrieben, die zu einem vertieften Verständnis fundamentaler Prozesse bei der elektrochemischen Herstellung von Dünnschichten, sog. Targets, für kernphysikalische und -chemische Studien führten. Targets wurden mittels 'Molecular Plating' (MP) hergestellt, indem eine Elektrodeposition aus organischem Medium in der Regel bei konstantem Strom in Zwei-Elektroden-Zellen. Die Resultate erlaubten, optimierte Herstellungs-bedingungen zu ermitteln, welche die Produktion deutlich verbesserter Targets erlaubten. MP bei konstantem Strom ist ein massentransportkontrollierter Prozess. Der angelegte Strom wird durch einen konstanten Fluss elektroaktiver Spezies zur Kathode – auf der die Schicht wächst – und Anode aufrechterhalten. Die Untersuchungen zeigten, dass das Zellenpotential des Elektrodepositionsystems immer durch den Ohm'schen Spannungsabfall auf Grund des Widerstandes der verwendeten Lösung dominiert wurde. Dies erlaubte die Herleitung einer Beziehung zwischen dem Zellenpotential und der Konzentration der elektroaktiven Spezies. Die Beziehung erlaubt die Erklärung des gemessenen zeitlichen Verlaufs des Zellenpotentials während der Abscheidung als Funktion der Elektrolytkonzentration. Dies dient als Basis, auf der nun ein umfassenderes Bild der Prozesse, die für die charakteristischen Minima im Potentialverlauf einer Abscheidung verantwortlich sind, gewonnen werden kann. Es konnte gezeigt werden, dass die Minima mit der fast vollständigen Entfernung (durch Abscheidung) der aus einem gelösten Salz erzeugten Nd-Ionen korrespondieren. Die abgeschiedene Spezies wurde als Nd3+ identifiziert, vermutlich als Carboxylat, Oxid oder Hydroxid, was auf Grund der hohen negative Werte des Standardredoxpotentials der Lanthanide verständlich erscheint. Von den vorliegenden elektroaktiven Spezies tragen die Nd3+ Ionen nur zu knapp 20% zum Gesamtstrom bei. Durch Elektrolyse tragen auch die Lösungsmittelkomponenten zu diese Strom bei. Die Gegenwart von elektrolysiertem Lösungsmittel wurde in Analysen der Dünnschichten bestätigt. Diese waren immer mit chemi- und physisorbierten Lösungsmittelmolekülen bedeckt. Die Analyse der Dünnschichten zeigte, dass die Oberflächen von einem furchenartiges Netz durchzogen waren, und dass diese während des Trocknen der Schichten nach dem MP entstanden. Ob die Schichten an Luft oder in inerter Atmosphäre trockneten, hatte keinen Einfluss. Es wurden Experimente mit mehreren Lösungsmitteln durchgeführt, die sich deutlich in ihren physikalischen Eigenschaften, v.a. dem Siedepunkt, unterschieden. Furchenfreie Dünnschichten konnten insbesondere bei MP in N,N-dimethylformamide (DMF) erzeugt werden. Die Verwendung von DMF in Kombination mit einer Abscheidung auf sehr glatten Substraten erlaubte die Produktion von sehr homogenen, glatten und defektfreien Schichten. Diese waren vermutlich geringeren inneren Spannungen während des Trocknens ausgesetzt, als Schichten auf raueren Substraten oder solche, die aus flüchtigeren Lösungsmitteln hergestellt wurden. Die Oberflächenrauigkeit des Substrats und das gewählte Lösungsmittel wurden so als Schlüsselfaktoren für die Produktion hochqualitativer Schichten identifiziert. Es konnte gezeigt werden, dass mit MP eine sehr effiziente Methode zur Herstellung homogener Schichten mit exzellenter Ausbeute ist. In weiteren Experimenten mit dem primordialen Alpha-Emitter 147Sm als Modellisotop wurde die Eignung solcher Schichten als Alpha-Quelle untersucht. Sowohl die Energieauflösung als auch der Anteil der Alpha-Teilchen, die den Detektor erreichten, waren von den Quelleneigenschaften abhängig. Die Effekte wurden verschiedenen Variablen der Dünnschicht zugeordnet, welche die Alpha-Spektren beeinflussten. Dominant war die Wahl des Lösungsmittels und die Rauigkeit des Substrats. Dies beeinflusste Schichtdicke und -morphologie sowie die Art des Schichtwachstums und veränderte die Detektionseffizienz in Alpha-Messungen bis zu 15%. Nur homogene, ebene Schichten, die aus DMF auf glatten Substraten abgeschieden wurden, eignen sich optimal als Alpha-Quelle. Die gewonnenen Ergebnisse erlauben die optimierte Herstellung nuklearer Targets durch MP. Künftige Anwendungen beinhalten insbesondere die Herstellung von Targets für neutroneninduzierte Spaltexperimente und untergrundarmeAlpha-Messungen sehr kleiner Aktivitäten.
Resumo:
Gregarine apicomplexans are a diverse group of single-celled parasites that have feeding stages (trophozoites) and gamonts that generally inhabit the extracellular spaces of invertebrate hosts living in marine, freshwater, and terrestrial environments. Inferences about the evolutionary morphology of gregarine apicomplexans are being incrementally refined by molecular phylogenetic data, which suggest that several traits associated with the feeding cells of gregarines arose by convergent evolution. The study reported here supports these inferences by showing how molecular data reveals traits that are phylogenetically misleading within the context of comparative morphology alone. We examined the ultrastructure and molecular phylogenetic positions of two gregarine species isolated from the spaghetti worm Thelepus japonicus: Selenidium terebellae Ray 1930 and S. melongena n. sp. The ultrastructural traits of S. terebellae were very similar to other species of Selenidium sensu stricto, such as having vermiform trophozoites with an apical complex, few epicytic folds, and a dense array of microtubules underlying the trilayered pellicle. By contrast, S. melongena n. sp. lacked a comparably discrete assembly of subpellicular microtubules, instead employing a system of fibrils beneath the cell surface that supported a relatively dense array of helically arranged epicytic folds. Molecular phylogenetic analyses of small subunit rDNA sequences derived from single-cell PCR unexpectedly demonstrated that these two gregarines are close sister species. The ultrastructural differences between these two species were consistent with the fact that S. terebellae infects the inner lining of the host intestines, and S. melongena n. sp. primarily inhabits the coelom, infecting the outside wall of the host intestine. Altogether, these data demonstrate a compelling case of niche partitioning and associated morphological divergence in marine gregarine apicomplexans. (C) 2014 Elsevier GmbH. All rights reserved.
Resumo:
A considerable fraction of the world's biodiversity is of recent evolutionary origin and has evolved as a by-product of, and is maintained by, divergent adaptation in heterogeneous environments. Conservationists have paid attention to genetic homogenization caused by human-induced translocations (e.g. biological invasions and stocking), and to the importance of environmental heterogeneity for the ecological coexistence of species. However, far less attention has been paid to the consequences of loss of environmental heterogeneity to the genetic coexistence of sympatric species. Our review of empirical observations and our theoretical considerations on the causes and consequences of interspecific hybridization suggest that a loss of environmental heterogeneity causes a loss of biodiversity through increased genetic admixture, effectively reversing speciation. Loss of heterogeneity relaxes divergent selection and removes ecological barriers to gene flow between divergently adapted species, promoting interspecific introgressive hybridization. Since heterogeneity of natural environments is rapidly deteriorating in most biomes, the evolutionary ecology of speciation reversal ought to be fully integrated into conservation biology.
Resumo:
Cichlid fish inhabit a diverse range of environments that vary in the spectral content of light available for vision. These differences should result in adaptive selective pressure on the genes involved in visual sensitivity, the opsin genes. This study examines the evidence for differential adaptive molecular evolution in East African cichlid opsin genes due to gross differences in environmental light conditions. First, we characterize the selective regime experienced by cichlid opsin genes using a likelihood ratio test format, comparing likelihood models with different constraints on the relative rates of amino acid substitution, across sites. Second, we compare turbid and clear lineages to determine if there is evidence of differences in relative rates of substitution. Third, we present evidence of functional diversification and its relationship to the photic environment among cichlid opsin genes. We report statistical evidence of positive selection in all cichlid opsin genes, except short wavelength–sensitive 1 and short wavelength–sensitive 2b. In all genes predicted to be under positive selection, except short wavelength–sensitive 2a, we find differences in selective pressure between turbid and clear lineages. Potential spectral tuning sites are variable among all cichlid opsin genes; however, patterns of substitution consistent with photic environment–driven evolution of opsin genes are observed only for short wavelength–sensitive 1 opsin genes. This study identifies a number of promising candidate-tuning sites for future study by site-directed mutagenesis. This work also begins to demonstrate the molecular evolutionary dynamics of cichlid visual sensitivity and its relationship to the photic environment.
Resumo:
Three features of the heat shock response, reorganization of protein expression, intracellular accumulation of trehalose, and alteration in unsaturation degree of fatty acids were investigated in the thermophilic fungus Chaetomium thermophile and compared to the response displayed by a closely related mesophilic species, C. brasiliense. Thermophilic heat shock response paralleled the mesophilic response in many respects like (i) the temperature difference observed between normothermia and the upper limit of translational activity, (ii) the transient nature of the heat shock response at the level of protein expression including both the induction of heat shock proteins (HSPs) as well as the repression of housekeeping proteins, (iii) the presence of representatives of high-molecular-weight {HSPs} families, (iv) intracellular accumulation of trehalose, and finally (v) modifications in fatty acid composition. On the other hand, a great variability between the two organisms was observed for the proteins expressed during stress, in particular a protein of the {HSP60} family that was only observed in C. thermophile. This peptide was also present constitutively at normal temperature and may thus fulfil thermophilic functions. It is shown that accumulation of trehalose does not play a part in thermophily but is only a stress response. C. thermophile contains less polyunsaturated fatty acids at normal temperature than C. brasiliense, a fact that can be directly related to thermophily. When subjected to heat stress, both organisms tended to accumulate shorter and less unsaturated fatty acids.