980 resultados para MILK-YIELD


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of the study was to estimate heritability and repeatability for milk yield (MY) and lactation length (LL) in buffaloes using Bayesian inference. The Brazilian genetic improvement program of buffalo provided the data that included 628 females, from four herds, born between 1980 and 2003. In order to obtain the estimates of variance, univariate analyses were performed with the Gibbs sampler, using the MTGSAM software. The model for MY and LL included direct genetic additive and permanent environment as random effects, and contemporary groups, milking frequency and calving number as fixed effects. The convergence diagnosis was performed with the Geweke method using an algorithm implemented in R software through the package Bayesian Output Analysis. Average for milk yield and lactation length was 1,546.1 +/- 483.8 kg and 252.3 +/- 42.5 days, respectively. The heritability coefficients were 0.31 (mode), 0.35 (mean) and 0.34 (median) for MY and 0.11 (mode), 0.10 (mean) and 0.10 (median) for LL. The repeatability coefficient (mode) were 0.50 and 0.15 for MY and LL, respectively. Milk yield is the only trait with clear potential for genetic improvement by direct genetic selection. The repeatability for MY indicates that selection based on the first lactation could contribute for an improvement in this trait.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study was to estimate genetic parameters for milk yield at 244 days and lactation length in graded buffalo cows at the El Cangre Cattle Genetic Enterprise. Data were gathered from 2575 lactations, 1377 buffalo cows, 37 milking units and between 2002-2009 calving years. It was employed the Restricted Maximum Likelihood method (REML) for estimating (co) variance components with multi trait model. Average of milk yield at 244 days and lactation length were 864 kg and 240 days, respectively. Heritability was 0.15 for milk yield and 0.13 for lactation length. Genetic correlation between these traits was 0.63. It was concluded that it is necessary to intensify selection and to increase control of the information of the genetic herds to obtain high precision in the estimates and therefore, obtain bigger genetic progress in of this species in our country.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to estimate genetic parameters for milk yield (MY) in buffaloes using reaction norms. Model included the additive direct effect as random and contemporary group (herd and year of birth) were included as fixed effects and cow age classes (linear) as covariables. The animal additive direct random effect was modeled through linear Legendre polynomials on environment gradient (EG) standardized means. Mean trends were taken into account by a linear regression on Legendre polynomials of environmental group means. Residual variance was modeled trough 6 heterogeneity classes (EG). These classes of residual variance was formed : EG1: mean = 866,93 kg (621,68 kg-1011,76 kg); EG2: mean = 1193,00 kg (1011,76 kg-1251,49 kg); EG3: mean = 1309,37 kg (1251,49 kg -1393,20 kg); EG4: mean = 1497,59 kg (1393,20 kg-1593,53 kg); EG5: mean = 1664,78 kg (1593,53 kg -1727,32kg) e EG6: mean = 1973,85 kg (1727,32 kg -2422,19 kg).(Co) variance functions were estimated by restricted maximum likelihood (REML) using the GIBBS3F90 package. The heritability estimates for MY raised as the environmental gradient increased, varying from 0.20 to 0.40. However, in intermediate to favorable environments, the heritability estimates obtained with Considerable genotype-environment interaction was found for MY using reaction norms. For genetic evaluation of MY is necessary to consider heterogeneity of variances to model the residual variance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study was to estimate variance components and genetic parameters for accumulated 305-day milk yield (MY305) over multiple ages, from 24 to 120 months of age, applying random regression (RRM), repeatability (REP) and multi-trait (MT) models. A total of 4472 lactation records from 1882 buffaloes of the Murrah breed were utilized. The contemporary group (herd-year-calving season) and number of milkings (two levels) were considered as fixed effects in all models. For REP and RRM, additive genetic, permanent environmental and residual effects were included as random effects. MT considered the same random effects as did REP and RRM with the exception of permanent environmental effect. Residual variances were modeled by a step function with 1, 4, and 6 classes. The heritabilities estimated with RRM increased with age, ranging from 0.19 to 0.34, and were slightly higher than that obtained with the REP model. For the MT model, heritability estimates ranged from 0.20 (37 months of age) to 0.32 (94 months of age). The genetic correlation estimates for MY305 obtained by RRM (L23.res4) and MT models were very similar, and varied from 0.77 to 0.99 and from 0.77 to 0.99, respectively. The rank correlation between breeding values for MY305 at different ages predicted by REP, MT, and RRM were high. It seems that a linear and quadratic Legendre polynomial to model the additive genetic and animal permanent environmental effects, respectively, may be sufficient to explain more parsimoniously the changes in MY305 genetic variation with age.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of markers distributed all long the genome may increase the accuracy of the predicted additive genetic value of young animals that are candidates to be selected as reproducers. In commercial herds, due to the cost of genotyping, only some animals are genotyped and procedures, divided in two or three steps, are done in order to include these genomic data in genetic evaluation. However, genomic evaluation may be calculated using one unified step that combines phenotypic data, pedigree and genomics. The aim of the study was to compare a multiple-trait model using only pedigree information with another using pedigree and genomic data. In this study, 9,318 lactations from 3061 buffaloes were used, 384 buffaloes were genotyped using a Illumina bovine chip (Illumina Infinium (R) bovineHD BeadChip). Seven traits were analyzed milk yield (MY), fat yield (FY), protein yield (PY), lactose yield (LY), fat percentage (F%), protein percentage (P%) and somatic cell score (SCSt). Two analyses were done: one using phenotypic and pedigree information (matrix A) and in the other using a matrix based in pedigree and genomic information (one step, matrix H). The (co) variance components were estimated using multiple-trait analysis by Bayesian inference method, applying an animal model, through Gibbs sampling. The model included the fixed effects of contemporary groups (herd-year-calving season), number of milking (2 levels), and age of buffalo at calving as (co) variable (quadratic and linear effect). The additive genetic, permanent environmental, and residual effects were included as random effects in the model. The heritability estimates using matrix A were 0.25, 0.22, 0.26, 0.17, 0.37, 0.42 and 0.26 and using matrix H were 0.25, 0.24, 0.26, 0.18, 0.38, 0.46 and 0.26 for MY, FY, PY, LY, % F, % P and SCCt, respectively. The estimates of the additive genetic effect for the traits were similar in both analyses, but the accuracy were bigger using matrix H (superior to 15% for traits studied). The heritability estimates were moderated indicating genetic gain under selection. The use of genomic information in the analyses increases the accuracy. It permits a better estimation of the additive genetic value of the animals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Given the importance of Guzera breeding programs for milk production in the tropics, the objective of this study was to compare alternative random regression models for estimation of genetic parameters and prediction of breeding values. Test-day milk yields records (TDR) were collected monthly, in a maximum of 10 measurements. The database included 20,524 records of first lactation from 2816 Guzera cows. TDR data were analyzed by random regression models (RRM) considering additive genetic, permanent environmental and residual effects as random and the effects of contemporary group (CG), calving age as a covariate (linear and quadratic effects) and mean lactation curve as fixed. The genetic additive and permanent environmental effects were modeled by RRM using Wilmink, All and Schaeffer and cubic B-spline functions as well as Legendre polynomials. Residual variances were considered as heterogeneous classes, grouped differently according to the model used. Multi-trait analysis using finite-dimensional models (FDM) for testday milk records (TDR) and a single-trait model for 305-days milk yields (default) using the restricted maximum likelihood method were also carried out as further comparisons. Through the statistical criteria adopted, the best RRM was the one that used the cubic B-spline function with five random regression coefficients for the genetic additive and permanent environmental effects. However, the models using the Ali and Schaeffer function or Legendre polynomials with second and fifth order for, respectively, the additive genetic and permanent environmental effects can be adopted, as little variation was observed in the genetic parameter estimates compared to those estimated by models using the B-spline function. Therefore, due to the lower complexity in the (co)variance estimations, the model using Legendre polynomials represented the best option for the genetic evaluation of the Guzera lactation records. An increase of 3.6% in the accuracy of the estimated breeding values was verified when using RRM. The ranks of animals were very close whatever the RRM for the data set used to predict breeding values. Considering P305, results indicated only small to medium difference in the animals' ranking based on breeding values predicted by the conventional model or by RRM. Therefore, the sum of all the RRM-predicted breeding values along the lactation period (RRM305) can be used as a selection criterion for 305-day milk production. (c) 2014 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to estimate milk production and food consumption during the occurrence of heat waves in the Triangulo Mineiro and Alto Paranaiba, MG by means of bioclimatic zoning based on the Temperature and Humidity Index (THI). Therefore a history of heat wave occurrence between the years 2000-2010 was compiled. The decline in milk production (DMP) and reduced food consumption (RFC) were simulated in cities where periods of heat waves were identified. Frutal and Ituiutaba had the highest rate of heat wave occurrence per year. The DMP and RFC showed bioclimatic differences between the cities of Uberaba, Ituiutaba and Frutal. The cities with the best bioclimatic conditions were Sacramento and Patrocinio, as they presented a THI classified outside of the emergency range, with a night THI of below 76 and without heat waves. Therefore, the occurrence of heat waves can impair food intake and decrease milk production, thereby most effectively demonstrating the effects of thermal stress on dairy cows in the Triangulo Mineiro and Alto Paranaiba, MG region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study evaluated the effects of organic and inorganic sources of minerals in diets for mid-lactation dairy cows on milk yield and composition, intake and total apparent digestibility of dry matter and nutrients, blood parameters, microbial protein synthesis, and energy and protein balances. Twenty Holstein cows averaging 146.83 +/- 67.34 days in milk and weighing 625.30 +/- 80.37 kg were used. The experimental design was a crossover. Diets were composed of corn silage (50%), ground grain corn, and soybean meal, differing with regard to the sources of trace minerals, plus an organic and inorganic mix. The organic mineral source increased milk fat and fat-corrected milk yield without changing milk yield, intake, or total apparent digestibility. Blood parameters, microbial protein synthesis, and energy and protein balances were not affected by the sources of minerals. Organic sources of minerals improve milk fat yield without affecting other parameters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study was to evaluate different herbage allowances in stargrass (Cynodon nlemfuensis Vanderyst var. nlemfuensis), on the herbage disappearance rate (HDR) and milk yield in crossbred Holstein x Gir cows. Thirty animals were assigned to three different herbage allowances (HA), ranging from 10.0, 12.5 and 15.0% BW. There was effect of HA on the HDR ( P<0.001). Increasing the HA in one unit had effect on the HDR increasing by 140.0kg ha(-1) day(-1). There was effect of leaf: stem ratio on milk yield (P<0.05). The increasing in supplying herbage allowances did not resulted in increased milk yield because the management for herbage allowance and herbage growth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A total of 46,089 individual monthly test-day (TD) milk yields (10 test-days), from 7,331 complete first lactations of Holstein cattle were analyzed. A standard multivariate analysis (MV), reduced rank analyses fitting the first 2, 3, and 4 genetic principal components (PC2, PC3, PC4), and analyses that fitted a factor analytic structure considering 2, 3, and 4 factors (FAS2, FAS3, FAS4), were carried out. The models included the random animal genetic effect and fixed effects of the contemporary groups (herd-year-month of test-day), age of cow (linear and quadratic effects), and days in milk (linear effect). The residual covariance matrix was assumed to have full rank. Moreover, 2 random regression models were applied. Variance components were estimated by restricted maximum likelihood method. The heritability estimates ranged from 0.11 to 0.24. The genetic correlation estimates between TD obtained with the PC2 model were higher than those obtained with the MV model, especially on adjacent test-days at the end of lactation close to unity. The results indicate that for the data considered in this study, only 2 principal components are required to summarize the bulk of genetic variation among the 10 traits.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this paper is to model variations in test-day milk yields of first lactations of Holstein cows by RR using B-spline functions and Bayesian inference in order to fit adequate and parsimonious models for the estimation of genetic parameters. They used 152,145 test day milk yield records from 7317 first lactations of Holstein cows. The model established in this study was additive, permanent environmental and residual random effects. In addition, contemporary group and linear and quadratic effects of the age of cow at calving were included as fixed effects. Authors modeled the average lactation curve of the population with a fourth-order orthogonal Legendre polynomial. They concluded that a cubic B-spline with seven random regression coefficients for both the additive genetic and permanent environment effects was to be the best according to residual mean square and residual variance estimates. Moreover they urged a lower order model (quadratic B-spline with seven random regression coefficients for both random effects) could be adopted because it yielded practically the same genetic parameter estimates with parsimony. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study was carried out with the objective of evaluating the effects of feeding dairy cows with organic or inorganic sources of zinc (Zn), copper (Cu) and selenium (Se) on blood concentrations of these minerals, blood metabolic profiles, nutrient intake and milk yield and composition. Nineteen Holstein cows were selected and randomly assigned to two groups for receiving organic (n = 9) or inorganic (n = 10) sources of Zn, Cu and Se from 60 days before the expected date of calving to 80 days of lactation. Samples of feed, orts and milk were collected for analysis. Body condition score (BCS) was determined and blood samples were collected for analysis of Zn, Cu and Se concentrations, as well as for metabolic profile. Supplying organic or inorganic sources of Zn, Cu, and Se did not affect dry matter and nutrient intake, blood metabolic profile, milk yield and composition, plasma concentration of these minerals, and BCS or change the BCS in cows from 60 days before the expected date of calving to 80 days of lactation. An effect of time was observed on all feed intake variables, plasma concentrations of Zn and Se, milk yield, milk protein content, BCS and change in BCS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of treatment with eprinomectin on milk yield, milk composition and somatic cell counts (SCCs) was studied in 105 dairy cows located on seven farms in South Tyrol, Italy. On each farm, half of the animals were treated with eprinomectin and the other half were used as an untreated control group. Three test day records per animal were obtained before treatment (days -117, -75 and -33) and another three test day records were obtained after treatment (days 22, 62 and 131). Test day records comprised milk yield, milk composition, SCC and days in milk. On the day of treatment, blood samples and faecal samples were taken for parasitological analysis. Cows with positive faecal egg counts yielded less milk. A significant effect of eprinomectin on milk yield was observed after treatment and was most pronounced on the second and the third test days after treatment (+1.90 kg [P=0.002] and +2.63 kg [P<0.001], respectively). Furthermore, a significant decrease in SCC was observed on the second test day after treatment.