959 resultados para MICROCOMPUTED TOMOGRAPHY
Resumo:
This article aimed at comparing the accuracy of linear measurement tools of different commercial software packages. Eight fully edentulous dry mandibles were selected for this study. Incisor, canine, premolar, first molar and second molar regions were selected. Cone beam computed tomography (CBCT) images were obtained with i-CAT Next Generation. Linear bone measurements were performed by one observer on the cross-sectional images using three different software packages: XoranCat®, OnDemand3D® and KDIS3D®, all able to assess DICOM images. In addition, 25% of the sample was reevaluated for the purpose of reproducibility. The mandibles were sectioned to obtain the gold standard for each region. Intraclass coefficients (ICC) were calculated to examine the agreement between the two periods of evaluation; the one-way analysis of variance performed with the post-hoc Dunnett test was used to compare each of the software-derived measurements with the gold standard. The ICC values were excellent for all software packages. The least difference between the software-derived measurements and the gold standard was obtained with the OnDemand3D and KDIS3D (-0.11 and -0.14 mm, respectively), and the greatest, with the XoranCAT (+0.25 mm). However, there was no statistical significant difference between the measurements obtained with the different software packages and the gold standard (p> 0.05). In conclusion, linear bone measurements were not influenced by the software package used to reconstruct the image from CBCT DICOM data.
Resumo:
The development of technological routes to convert lignocellulosic biomass to liquid fuels requires an in-depth understanding of the cell wall architecture of substrates. Essential pretreatment processes are conducted to reduce biomass recalcitrance and usually increase the reactive surface area. Quantitative three-dimensional information about both bulk and surface structural features of substrates needs to be obtained to expand our knowledge of substrates. In this work, phase-contrast tomography (PCT) was used to gather information about the structure of a model lignocellulosic biomass (piassava fibers). The three-dimensional cellular organization of piassava fibers was characterized by PCT using synchrotron radiation. This technique enabled important physical features that describe the substrate piassava fibers to be visualized and quantified. The external surface area of a fiber and internal surface area of the pores in a fiber could be determined separately. More than 96% of the overall surface area available to enzymes was in the bulk substrate. The pore surface area and length exhibited a positive linear relationship, where the slope of this relationship depended on the plant tissue. We demonstrated that PCT is a powerful tool for the three-dimensional characterization of the cell wall features related to biomass recalcitrance. Original and relevant quantitative information about the structural features of the analyzed material were obtained. The data obtained by PCT can be used to improve processing routes to efficiently convert biomass feedstock into sugars.
Resumo:
Chest radiography (CXR) is inferior to Thin-section computed tomography in the detection of asbestos related interstitial and pleural abnormalities. It remains unclear, however, whether these limitations are large enough to impair CXR´s ability in detecting the expected reduction in the frequency of these asbestos-related abnormalities (ARA) as exposure decreases. Clinical evaluation, CXR, Thin-section CT and spirometry were obtained in 1418 miners and millers who were exposed to progressively lower airborne concentrations of asbestos. They were separated into four groups according to the type, period and measurements of exposure and/or procedures for controlling exposure: Group I (1940-1966/tremolite and chrysotile, without measurements of exposure and procedures for controlling exposure); Group II (1967-1976/chrysotile only, without measurements of exposure and procedures for controlling exposure); Group III (1977-1980/chrysotile only, initiated measurements of exposure and procedures for controlling exposure) and Group IV (after 1981/chrysotile only, implemented measurements of exposure and a comprehensive procedures for controlling exposure). In all groups, CXR suggested more frequently interstitial abnormalities and less frequently pleural plaques than observed on Thin-section CT (p<0.050). The odds for asbestosis in groups of decreasing exposure diminished to greater extent at Thin-section CT than on CXR. Lung function was reduced in subjects who had pleural plaques evident only on Thin-section CT (p<0.050). In a longitudinal evaluation of 301 subjects without interstitial and pleural abnormalities on CXR and Thin-section CT in a previous evaluation, only Thin-section CT indicated that these ARA reduced as exposure decreased. CXR compared to Thin-section CT was associated with false-positives for interstitial abnormalities and false-negatives for pleural plaques, regardless of the intensity of asbestos exposure. Also, CXR led to a substantial misinformation of the effects of the progressively lower asbestos concentrations in the occurrence of asbestos-related diseases in miners and millers.
Resumo:
The determination of the success of endodontic treatment has been often discussed based on outcome obtained by periapical radiography. The aim of this study was to verify the influence of intracanal post on apical periodontitis detected by cone-beam computed tomography (CBCT). A consecutive sample of 1020 images (periapical radiographs and CBCT scans) taken from 619 patients (245 men; mean age, 50.1 years) between February 2008 and September 2009 were used in this study. Presence and intracanal post length (short, medium and long) were associated with apical periodontitis (AP). Chi-square test was used for statistical analyses. Significance level was set at p<0.01. The kappa value was used to assess examiner variability. From a total of 591 intracanal posts, AP was observed in 15.06%, 18.78% and 7.95% using periapical radiographs, into the different lengths, short, medium and long, respectively (p=0.466). Considering the same posts length it was verified AP in 24.20%, 26.40% and 11.84% observed by CBCT scans, respectively (p=0.154). From a total of 1,020 teeth used in this study, AP was detected in 397 (38.92%) by periapical radiography and in 614 (60.19%) by CBCT scans (p<0.001). The distribution of intracanal posts in different dental groups showed higher prevalence in maxillary anterior teeth (54.79%). Intracanal posts lengths did not influenced AP. AP was detected more frequently when CBCT method was used.
Resumo:
This article describes and discusses a method to determine root curvature radius by using cone-beam computed tomography (CBCT). The severity of root canal curvature is essential to select instrument and instrumentation technique. The diagnosis and planning of root canal treatment have traditionally been made based on periapical radiography. However, the higher accuracy of CBCT images to identify anatomic and pathologic alterations compared to panoramic and periapical radiographs has been shown to reduce the incidence of false-negative results. In high-resolution images, the measurement of root curvature radius can be obtained by circumcenter. Based on 3 mathematical points determined with the working tools of Planimp® software, it is possible to calculate root curvature radius in both apical and coronal directions. The CBCT-aided method for determination of root curvature radius presented in this article is easy to perform, reproducible and allows a more reliable and predictable endodontic planning, which reflects directly on a more efficacious preparation of curved root canals.
Resumo:
Conventional radiography has shown limitation in acquiring image of the ATM region, thus, computed tomography (CT) scanning has been the best option to the present date for diagnosis, surgical planning and treatment of bone lesions, owing to its specific properties. OBJECTIVE: The aim of the study was to evaluate images of simulated bone lesions at the head of the mandible by multislice CT. MATERIAL AND METHODS: Spherical lesions were made with dental spherical drills (sizes 1, 3, and 6) and were evaluated by using multislice CT (64 rows), by two observers in two different occasions, deploying two protocols: axial, coronal, and sagittal images, and parasagittal images for pole visualization (anterior, lateral, posterior, medial and superior). Acquired images were then compared with those lesions in the dry mandible (gold standard) to evaluate the specificity and sensibility of both protocols. Statistical methods included: Kappa statistics, validity test and chi-square test. Results demonstrated the advantage of associating axial, coronal, and sagittal slices with parasagittal slices for lesion detection at the head of the mandible. RESULTS: There was no statistically significant difference between the types of protocols regarding a particular localization of lesions at the poles. CONCLUSIONS: Protocols for the assessment of the head of the mandible were established to improve the visualization of alterations of each of the poles of the mandible's head. The anterior and posterior poles were better visualized in lateral-medial planes while lateral, medial and superior poles were better visualized in the anterior-posterior plane.
Resumo:
There are many studies that compare the accuracy of multislice (MSCT) and cone beam (CBCT) computed tomography for evaluations in the maxillofacial region. However, further studies comparing both acquisition techniques for the evaluation of simulated mandibular bone lesions are needed. The aim of this study was to compare the accuracy of MSCT and CBCT in the diagnosis of simulated mandibular bone lesions by means of cross sectional images and axial/MPR slices. Lesions with different dimensions, shape and locularity were produced in 15 dry mandibles. The images were obtained following the cross sectional and axial/MPR (Multiplanar Reconstruction) imaging protocols and were interpreted independently. CBCT and MSCT showed similar results in depicting the percentage of cortical bone involvement, with great sensitivity and specificity (p < 0.005). There were no significant intra- or inter-examiner differences between axial/MPR images and cross sectional images with regard to sensitivity and specificity. CBCT showed results similar to those of MSCT for the identification of the number of simulated bone lesions. Cross sectional slices and axial/MPR images presented high accuracy, proving useful for bone lesion diagnosis.
Resumo:
There are many limitations to image acquisition, using conventional radiography, of the temporomandibular joint (TMJ) region. The Computed Tomography (CT) scan is a better option, due to its higher accuracy, for purposes of diagnosis, surgical planning and treatment of bone injuries. The aim of the present study was to analyze two protocols of cone beam computed tomography for the evaluation of simulated mandibular condyle bone lesions. Spherical lesions were simulated in 30 dry mandibular condyles, using dentist drills and drill bits sizes 1, 3 and 6. Each of the mandibular condyles was submitted to cone beam computed tomography (CBCT) using two protocols: 1) axial, coronal and sagittal multiplanar reconstruction (MPR); and 2) sagittal plus coronal slices throughout the longitudinal axis of the mandibular condyles. For these protocols, 2 observers analyzed the CBCT images independently, regarding the presence or not of injuries. Only one of the observers, however, performed on 2 different occasions. The results were compared to the gold standard, evaluating the percentage of agreement, degree of accuracy of CBCT protocols and observers' examination. The z test was used for the statistical analysis. The results showed there were no statistically significant differences between the 2 protocols. There was greater difficulty in the assessment of small-size simulated lesions (drill # 1). From the results of this study, it can be concluded that CBCT is an accurate tool for analyzing mandibular condyle bone lesions, with the MPR protocol showing slightly better results than the sagittal plus coronal slices throughout the longitudinal axis.
Resumo:
PURPOSE: To report an uncommon case of osteochondroma affecting the mandibular condyle of a young patient and to illustrate the important contributions of different imaging resources to the diagnosis and treatment planning of this lesion. CASE DESCRIPTION: A 24-year-old female patient with the chief complaint of an increasing facial asymmetry and pain in the left pre-auricular region, revealing a reduced mouth opening, mandibular deviation and posterior cross-bite over a period of 18 months. Panoramic radiography revealed an enlargement of the left condyle, whereas computed tomography (CT) sections and three-dimensional CT showed a well-defined bone growth arising from condylar neck. The scintigraphy exam showed an abnormal osteogenic activity in the left temporomandibular joint. The condyle was surgically removed and after 18 months follow-up the panoramic radiography and CT scans showed no signs of recurrence. CONCLUSION: Although osteochondroma is a benign bone tumor that rarely arises in cranial and maxillofacial region, it should be considered in the differential diagnosis of slow-growing masses of the temporomandibular area and the use of different imaging exams significantly contribute to the correct diagnosis and treatment planning of this pathological condition.
Resumo:
Three-dimensional spectroscopy techniques are becoming more and more popular, producing an increasing number of large data cubes. The challenge of extracting information from these cubes requires the development of new techniques for data processing and analysis. We apply the recently developed technique of principal component analysis (PCA) tomography to a data cube from the center of the elliptical galaxy NGC 7097 and show that this technique is effective in decomposing the data into physically interpretable information. We find that the first five principal components of our data are associated with distinct physical characteristics. In particular, we detect a low-ionization nuclear-emitting region (LINER) with a weak broad component in the Balmer lines. Two images of the LINER are present in our data, one seen through a disk of gas and dust, and the other after scattering by free electrons and/or dust particles in the ionization cone. Furthermore, we extract the spectrum of the LINER, decontaminated from stellar and extended nebular emission, using only the technique of PCA tomography. We anticipate that the scattered image has polarized light due to its scattered nature.
Resumo:
One of the electrical impedance tomography objectives is to estimate the electrical resistivity distribution in a domain based only on electrical potential measurements at its boundary generated by an imposed electrical current distribution into the boundary. One of the methods used in dynamic estimation is the Kalman filter. In biomedical applications, the random walk model is frequently used as evolution model and, under this conditions, poor tracking ability of the extended Kalman filter (EKF) is achieved. An analytically developed evolution model is not feasible at this moment. The paper investigates the identification of the evolution model in parallel to the EKF and updating the evolution model with certain periodicity. The evolution model transition matrix is identified using the history of the estimated resistivity distribution obtained by a sensitivity matrix based algorithm and a Newton-Raphson algorithm. To numerically identify the linear evolution model, the Ibrahim time-domain method is used. The investigation is performed by numerical simulations of a domain with time-varying resistivity and by experimental data collected from the boundary of a human chest during normal breathing. The obtained dynamic resistivity values lie within the expected values for the tissues of a human chest. The EKF results suggest that the tracking ability is significantly improved with this approach.
Resumo:
Electrical impedance tomography (EIT) captures images of internal features of a body. Electrodes are attached to the boundary of the body, low intensity alternating currents are applied, and the resulting electric potentials are measured. Then, based on the measurements, an estimation algorithm obtains the three-dimensional internal admittivity distribution that corresponds to the image. One of the main goals of medical EIT is to achieve high resolution and an accurate result at low computational cost. However, when the finite element method (FEM) is employed and the corresponding mesh is refined to increase resolution and accuracy, the computational cost increases substantially, especially in the estimation of absolute admittivity distributions. Therefore, we consider in this work a fast iterative solver for the forward problem, which was previously reported in the context of structural optimization. We propose several improvements to this solver to increase its performance in the EIT context. The solver is based on the recycling of approximate invariant subspaces, and it is applied to reduce the EIT computation time for a constant and high resolution finite element mesh. In addition, we consider a powerful preconditioner and provide a detailed pseudocode for the improved iterative solver. The numerical results show the effectiveness of our approach: the proposed algorithm is faster than the preconditioned conjugate gradient (CG) algorithm. The results also show that even on a standard PC without parallelization, a high mesh resolution (more than 150,000 degrees of freedom) can be used for image estimation at a relatively low computational cost. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Gamma ray tomography experiments have been carried out to detect spatial patterns in the porosity in a 0.27 m diameter column packed with steel Rashig rings of different sizes: 12.6, 37.9, and 76 mm. using a first generation CT system (Chen et al., 1998). A fast Fourier transform tomographic reconstruction algorithm has been used to calculate the spatial variation over the column cross section. Cross-sectional gas porosity and solid holdup distribution were determinate. The values of cross-sectional average gas porosity were epsilon=0.849, 0.938 and 0.966 for the 12.6, 37.9, and 76 mm rings, respectively. Radial holdup variation within the packed bed has been determined. The variation of the circumferentially averaged gas holdup in the radial direction indicates that the porosity in the column wall region is a somewhat higher than that in the bulk region, due to the effect of the column wall. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Our aim was to document the benefits of three dimensional finite element model generations from computed tomography data as well as the realistic creation of all oral structures in a patient. The stresses resulting from the applied load in our study did not exceed the structure limitations, suggesting a clinically acceptable physiological condition.
Resumo:
Background/purpose The continuous advancement in cosmetic science has led to an increasing demand for the development of non-invasive, reliable scientific techniques directed toward claim substantiation, which is of utmost relevance, to obtain data regarding the efficacy and safety of cosmetic products. Methods In this work, we used the optical coherence tomography (OCT) technique to produce in vitro transversal section-images of human hair. We also compared the OCT signal before and after chemical treatment with an 18% w/w ammonium thioglycolate solution. Results The mean diameter of the medulla was 29 +/- 7 mu m and the hair diameter was 122 +/- 16 mu m in our samples of standard Afro-ethnic hair. A three-dimensional (3D) image was constructed starting from 601 cross-sectional images (slices). Each slice was taken in steps of 6.0 mu m at eight frames per second, and the entire 3D image was constructed in 60 s. Conclusion It was possible to identify, using the A-scan protocol, the principal structures: the cuticle, cortex and medulla. After chemical treatment, it was not possible to identify the main structures of hair fiber due to index matching promoted by deleterious action of the chemical agent.