993 resultados para MEMBRANE-LYTIC PEPTIDES


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The question concerning whether all membranes fuse according to the same mechanism has yet to be answered satisfactorily. During fusion of model membranes or viruses, membranes dock, the outer membrane leaflets mix (termed hemifusion), and finally the fusion pore opens and the contents mix. Viral fusion proteins consist of a membrane-disturbing 'fusion peptide' and a helical bundle that pin the membranes together. Although SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complexes form helical bundles with similar topology, it is unknown whether SNARE-dependent fusion events on intracellular membranes proceed through a hemifusion state. Here we identify the first hemifusion state for SNARE-dependent fusion of native membranes, and place it into a sequence of molecular events: formation of helical bundles by SNAREs precedes hemifusion; further progression to pore opening requires additional peptides. Thus, SNARE-dependent fusion may proceed along the same pathway as viral fusion: both use a docking mechanism via helical bundles and additional peptides to destabilize the membrane and efficiently induce lipid mixing. Our results suggest that a common lipidic intermediate may underlie all fusion reactions of lipid bilayers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Large lytic lesions, relatively asymptomatic, involving the femoral neck and the base of the head are described in two patients suffering from a classical seropositive rheumatoid arthritis. Histological examination failed to reveal signs of malignancy, infection or pigmented villonodular synovitis. There were no rheumatoid nodules but a chronic hypertrophic villous synovitis was found. Rheumatoid synovium may invade the superior extremity of the femur; this fact is important in the differential diagnosis of destructive lesions of the femoral neck in RA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Membrane-active antimicrobial peptides, such as polymyxin B (PxB), are currently in the spotlight as potential candidates toovercome bacterial resistance. We have designed synthetic analogs ofPxB in order to determine the structural requirements for membraneaction. Since the mechanism of action of PxB involves interaction withboth the outer membrane and the cytoplasmic membrane of Gramnegative bacteria, we have used an approach based on mimicking theouter layers of these membranes using monolayers, Langmuir-Blodgettfilms and unilamelar vesicles, and applying a battery of biophysicalmethods in order to dissect the different events of membraneinteraction. Collectively, results indicate that the PxB analogues act inthe bacterial membrane by the same mechanism than PxB, and that cationic amphipathicity determines peptide activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Immune responses against tumor-associated antigens rely on efficient epitope presentation. The melanoma-associated antigen (Ag) gp100 contains HLA-A*0201 ligands that are characterized by low to medium binding affinity, among which gp100(209-217) is the most prominent (Kawakami et al., J Immunol 154:3961-3968, 1995). While this epitope is a natural T-cell target, it primes with low-efficiency T-cell responses during immunization. A modified gp100 epitope, gp100(209-217T210M), that contains a Thr to Met substitution at position 2 of the antigenic nonamer is characterized by high binding affinity for HLA-A*0201 and elicits strong and clinically effective T-cell responses. This higher affinity is believed to represent the sole reason for enhanced immunogenicity. Contrasting with this observation is the unpredictable relationship between affinity and immunogenicity observed in other antigen systems. In addition, we noted a striking difference between the capability of endogenously processed gp100(209-217) and gp100(209-217T210M) to induce T-cell responses in an in vitro model. Therefore, we questioned whether factors other than HLA-affinity might play a role in determining the immunogenicity of these epitopes. In the present study, we evaluated the in vitro proteasomal cleavages of 23meric precursor peptides encompassing the native sequence (gp100(201-223)) or the modified sequence (gp100(201-223T210M)). Here we show that the standard proteasome liberates the C-termini of both antigenic peptides but not the N-termini. Quantitative analysis of the digestion products revealed that more of the fragments displaying the final C-termini were produced from the wild-type precursor. However, a stronger TCR engagement was observed when fractions of digested gp100(201-223T210M) were used to activate an HLA-A*0201-expressing target T-cell clone. This difference was also found using separately produced, synthetic nonamers. In conclusion, the high binding affinity of gp100(209-217T210M) seems to compensate for possible differences in proteasomal cleavage at the biological level. Since the final antigenic nonamer is not directly produced by the proteasome, additional further factors may influence the antigenic peptide availability, such as post-proteasomal processing and intracellular peptide transport.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Membrane-active antimicrobial peptides, such as polymyxin B (PxB), are currently in the spotlight as potential candidates toovercome bacterial resistance. We have designed synthetic analogs ofPxB in order to determine the structural requirements for membraneaction. Since the mechanism of action of PxB involves interaction withboth the outer membrane and the cytoplasmic membrane of Gramnegative bacteria, we have used an approach based on mimicking theouter layers of these membranes using monolayers, Langmuir-Blodgettfilms and unilamelar vesicles, and applying a battery of biophysicalmethods in order to dissect the different events of membraneinteraction. Collectively, results indicate that the PxB analogues act inthe bacterial membrane by the same mechanism than PxB, and that cationic amphipathicity determines peptide activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have explored the threshold of tolerance of three unrelated cell types to treatments with potential cytoprotective peptides bound to Tat(48-57) and Antp(43-58) cell-permeable peptide carriers. Both Tat(48-57) and Antp(43-58) are well known for their good efficacy at crossing membranes of different cell types, their overall low toxicity, and their absence of leakage once internalised. Here, we show that concentrations of up to 100 microM of Tat(48-57) were essentially harmless in all cells tested, whereas Antp(43-58) was significantly more toxic. Moreover, all peptides bound to Tat(48-57) and Antp(43-58) triggered significant and length-dependent cytotoxicity when used at concentrations above 10 microM in all but one cell types (208F rat fibroblasts), irrespective of the sequence of the cargo. Absence of cytotoxicity in 208F fibroblasts correlated with poor intracellular peptide uptake, as monitored by confocal laser scanning fluorescence microscopy. Our data further suggest that the onset of cytotoxicity correlates with the activation of two intracellular stress signalling pathways, namely those involving JNK, and to a lesser extent p38 mitogen-activated protein kinases. These responses are of particular concern for cells that are especially sensitive to the activation of stress kinases. Collectively, these results indicate that in order to avoid unwanted and unspecific cytotoxicity, effector molecules bound to Tat(48-57) should be designed with the shortest possible sequence and the highest possible affinity for their binding partners or targets, so that concentrations below 10 microM can be successfully applied to cells without harm. Considering that cytotoxicity associated to Tat(48-57)- and Antp(43-58) bound peptide conjugates was not restricted to a particular type of cells, our data provide a general framework for the design of cell-penetrating peptides that may apply to broader uses of intracellular peptide and drug delivery.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dermatophytes are the most common agents of superficial mycoses, and exclusively infect stratum corneum, nails or hair. Therefore, secreted proteolytic activity is considered a virulence trait of these fungi. In a medium containing protein as a sole nitrogen and carbon source Trichophyton rubrum secretes a metallocarboxypeptidase (TruMcpA) of the M14 family according to the MEROPS proteolytic enzyme database. TruMcpA is homologous to human pancreatic carboxypeptidase A, and is synthesized as a precursor in a preproprotein form. The propeptide is removed to generate the mature active enzyme alternatively by either one of two subtilisins which are concomitantly secreted by the fungus. In addition, T. rubrum was shown to possess two genes (TruSCPA and TruSCPB) encoding serine carboxypeptidases of the S10 family which are homologues of the previously characterized Aspergillus and Penicillium secreted acid carboxypeptidases. However, in contrast to the Aspergillus and Penicillium homologues, TruScpA and TruScpB enzymes are not secreted into the environment, but are membrane-associated with a glycosylphosphatidylinositol (GPI) anchor. During infection, T. rubrum secreted and GPI-anchored carboxypeptidases may contribute to fungal virulence by cooperating with previously characterized endoproteases and aminopeptidases in the degradation of compact keratinized tissues into assimilable amino acids and short peptides.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The combined action of nisin and lactacin F, two bacteriocins produced by lactic acid bacteria, is additive. In this report, the basis of this effect is examined. Channels formed by lactacin F were studied by experiments using planar lipid bilayers, and bactericidal effects were analyzed by flow cytometry. Lactacin F produced pores with a conductance of 1 ns in black lipid bilayers in 1 mM KClat 10 mV at 20°C. Pore formation was strongly dependent on voltage. Although lactacin F formed pores at very low potential (10 mV), the dependence was exponentialabov e 40 mV. The injuries induced by nisin and lactacin F in the membranes of Lactobacillus helveticus produced different flow cytometric profiles. Probably, when both bacteriocins are present, each acts separately; their cooperation may be due to an increase in the number of single membrane injuries

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Membrane fusion is induced by SNARE complexes that are anchored in both fusion partners. SNAREs zipper up from the N to C terminus bringing the two membranes into close apposition. Their transmembrane domains (TMDs) might be mere anchoring devices, deforming bilayers by mechanical force. Structural studies suggested that TMDs might also perturb lipid structure by undergoing conformational transitions or by zipping up into the bilayer. Here, we tested this latter hypothesis, which predicts that the activity of SNAREs should depend on the primary sequence of their TMDs. We replaced the TMDs of all vacuolar SNAREs (Nyv1, Vam3, and Vti1) by a lipid anchor, by a TMD from a protein unrelated to the membrane fusion machinery, or by artificial leucine-valine sequences. Individual exchange of the native SNARE TMDs against an unrelated transmembrane anchor or an artificial leucine-valine sequence yielded normal fusion activities. Fusion activity was also preserved upon pairwise exchange of the TMDs against unrelated peptides, which eliminates the possibility for specific TMD-TMD interactions. Thus, a specific primary sequence or zippering beyond the SNARE domains is not a prerequisite for fusion. Lipid-anchored Vti1 was fully active, and lipid-anchored Nyv1 permitted the reaction to proceed up to hemifusion, and lipid-anchored Vam3 interfered already before hemifusion. The unequal contribution of proteinaceous TMDs on Vam3 and Nyv1 suggests that Q- and R-SNAREs might make different contributions to the hemifusion intermediate and the opening of the fusion pore. Furthermore, our data support the view that SNARE TMDs serve as nonspecific membrane anchors in vacuole fusion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Consensus is gathering that antimicrobial peptides that exert their antibacterial action at the membrane level must reach a local concentration threshold to become active. Studies of peptide interaction with model membranes do identify such disruptive thresholds but demonstrations of the possible correlation of these with the in vivo onset of activity have only recently been proposed. In addition, such thresholds observed in model membranes occur at local peptide concentrations close to full membrane coverage. In this work we fully develop an interaction model of antimicrobial peptides with biological membranes; by exploring the consequences of the underlying partition formalism we arrive at a relationship that provides antibacterial activity prediction from two biophysical parameters: the affinity of the peptide to the membrane and the critical bound peptide to lipid ratio. A straightforward and robust method to implement this relationship, with potential application to high-throughput screening approaches, is presented and tested. In addition, disruptive thresholds in model membranes and the onset of antibacterial peptide activity are shown to occur over the same range of locally bound peptide concentrations (10 to 100 mM), which conciliates the two types of observations

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Antimicrobial peptides offer a new class of therapeutic agents to which bacteria may not be able todevelop genetic resistance, since their main activity is in the lipid component of the bacterial cell mem-brane. We have developed a series of synthetic cationic cyclic lipopeptides based on natural polymyxin,and in this work we explore the interaction of sp-85, an analog that contains a C12 fatty acid at theN-terminus and two residues of arginine. This analog has been selected from its broad spectrum antibac-terial activity in the micromolar range, and it has a disruptive action on the cytoplasmic membrane ofbacteria, as demonstrated by TEM. In order to obtain information on the interaction of this analog withmembrane lipids, we have obtained thermodynamic parameters from mixed monolayers prepared withPOPG and POPE/POPG (molar ratio 6:4), as models of Gram positive and Gram negative bacteria, respec-tively. LangmuirBlodgett films have been extracted on glass plates and observed by confocal microscopy,and images are consistent with a strong destabilizing effect on the membrane organization induced bysp-85. The effect of sp-85 on the membrane is confirmed with unilamelar lipid vesicles of the same com-position, where biophysical experiments based on fluorescence are indicative of membrane fusion andpermeabilization starting at very low concentrations of peptide and only if anionic lipids are present.Overall, results described here provide strong evidence that the mode of action of sp-85 is the alterationof the bacterial membrane permeability barrier.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have characterized, in the Paracoccidioides brasiliensis yeast phase, an exocellular SH-dependent serine proteinase activity against Abz-MKRLTL-EDDnp and analogous fluorescent-quenched peptides, and showed that it is also active against constituents of the basement membrane in vitro. In the present study, we separated the components of P. brasiliensis culture filtrates by electrophoresis and demonstrated that the serine-thiol exocellular proteinase has a diffuse and heterogeneous migration by SDS-PAGE, localizing in a region between 69 and 43 kDa. The hydrolytic activity was demonstrable after SDS-PAGE using buffered agarose overlays of Abz-MKALTLQ-EDDnp, following incubation at 37oC, and detection of fluorescent bands with a UV transilluminator. Hydrolysis was more intense when incubation was carried out at basic pH, and was completely inhibited with 2.5 mM PMSF and partially with sodium 7-hydroxymercuribenzoate (2.5 mM p-HMB), suggesting its serine-thiol nature. A proteolytic band with similar characteristics was observed in conventional gelatin zymograms, but could not be correlated with a silver-stained component. Detection of the serine-thiol proteinase in substrate gels after SDS-PAGE provides a useful way of monitoring purification of the basement membrane degrading enzyme.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Guanylate cyclases (GC) serve in two different signaling pathways involving cytosolic and membrane enzymes. Membrane GCs are receptors for guanylin and atriopeptin peptides, two families of cGMP-regulating peptides. Three subclasses of guanylin peptides contain one intramolecular disulfide (lymphoguanylin), two disulfides (guanylin and uroguanylin) and three disulfides (E. coli stable toxin, ST). The peptides activate membrane receptor-GCs and regulate intestinal Cl- and HCO3- secretion via cGMP in target enterocytes. Uroguanylin and ST also elicit diuretic and natriuretic responses in the kidney. GC-C is an intestinal receptor-GC for guanylin and uroguanylin, but GC-C may not be involved in renal cGMP pathways. A novel receptor-GC expressed in the opossum kidney (OK-GC) has been identified by molecular cloning. OK-GC cDNAs encode receptor-GCs in renal tubules that are activated by guanylins. Lymphoguanylin is highly expressed in the kidney and heart where it may influence cGMP pathways. Guanylin and uroguanylin are highly expressed in intestinal mucosa to regulate intestinal salt and water transport via paracrine actions on GC-C. Uroguanylin and guanylin are also secreted from intestinal mucosa into plasma where uroguanylin serves as an intestinal natriuretic hormone to influence body Na+ homeostasis by endocrine mechanisms. Thus, guanylin peptides control salt and water transport in the kidney and intestine mediated by cGMP via membrane receptors with intrinsic guanylate cyclase activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reports remain insufficient on whether and how prostate-specific membrane antigen (PSMA) can influence in vivo osseous metastasis of prostate cancer (PCa). In the present study, the authors induced stable expression of PSMA in mouse PCa cell line RM-1. In vivo osseous metastasis was induced in 37 6-week-old female C57BL/6 mice weighing 22.45 ± 0.456 g. RM-1 cells were actively injected into the femoral bone cavity, leading to bilateral dissymmetry of bone density in the femoral bone. Tumor cells were also detected in bone tissue by pathological examination. The impact on bone density was demonstrated by the significant difference between animals injected with RM-PSMA cells (0.0738 ± 0.0185 g/cm²) and animals injected with RM-empty plasmid cells (0.0895 ± 0.0241 g/cm²). The lytic bone lesion of the RM-PSMA group (68.4%) was higher than that of the control group (27.8%). Immunohistochemistry showed that the expression of both vascular endothelial growth factor (VEGF) and matrix metalloproteinase-9 (MMP-9) was distinctly higher in the RM-PSMA group than in the control group, while ELISA and Western blot assay indicated that VEGF and MMP-9 were higher in the RM-PSMA group compared to the control group (in vitro). Thus, the present study proposed and then confirmed for the first time that PSMA can promote in vivo osseous metastasis of PCa by increasing sclerotic destruction of PCa cells. Further analyses also suggested that PSMA functions positively on the invasive ability of RM-1 by increasing the expression of MMP-9 and VEGF by osseous metastases in vivo

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis applies x-ray diffraction to measure he membrane structure of lipopolysaccharides and to develop a better model of a LPS bacterial melilbrane that can be used for biophysical research on antibiotics that attack cell membranes. \iVe ha'e Inodified the Physics department x-ray machine for use 3.'3 a thin film diffractometer, and have lesigned a new temperature and relative humidity controlled sample cell.\Ve tested the sample eel: by measuring the one-dimensional electron density profiles of bilayers of pope with 0%, 1%, 1G :VcJ, and 100% by weight lipo-polysaccharide from Pse'udo'lTwna aeTuginosa. Background VVe now know that traditional p,ntibiotics ,I,re losing their effectiveness against ever-evolving bacteria. This is because traditional antibiotic: work against specific targets within the bacterial cell, and with genetic mutations over time, themtibiotic no longer works. One possible solution are antimicrobial peptides. These are short proteins that are part of the immune systems of many animals, and some of them attack bacteria directly at the membrane of the cell, causing the bacterium to rupture and die. Since the membranes of most bacteria share common structural features, and these featuret, are unlikely to evolve very much, these peptides should effectively kill many types of bacteria wi Lhout much evolved resistance. But why do these peptides kill bacterial cel: '3 , but not the cells of the host animal? For gramnegative bacteria, the most likely reason is that t Ileir outer membrane is made of lipopolysaccharides (LPS), which is very different from an animal :;ell membrane. Up to now, what we knovv about how these peptides work was likely done with r !10spholipid models of animal cell membranes, and not with the more complex lipopolysa,echaricies, If we want to make better pepticies, ones that we can use to fight all types of infection, we need a more accurate molecular picture of how they \vork. This will hopefully be one step forward to the ( esign of better treatments for bacterial infections.